Nodejs scaling and prioritising functions - node.js

We have a node application running on the server that gets hit a lot and has to compile a zip file for download. That works well so far but I am nervous we will hit a point where performance becomes an issue.
(The application is currently running with forever on a ubuntu 14.04 machine.)
I am now asked to add all kinds of new features to the app which are more secondary and should not decrease the performance of the main function (the zip download). It would be OK to have those additional features fail in case the app is hit too many times in favour of the main zipping process.
What is the best practise here. Creating a REST API for the secondary features and put everything into a waiting list? It surely isn't enough to just create a second app and spawn a new process each time the main zip process finishes? How Can I ensure the most redundancy? I'm not talking about a multi-core cluster setup or load-balancing on NGINX, but a smart way of prioritising application functions on application level.
I hope this is not too broad. Cheers

First off, everything should be using async I/O, no synchronous I/O anywhere in your server. That's the #1 rule for building a scalable node.js server.
Second off, the highest priority tasks that have any significant CPU usage should be allowed to use multiple cores. If, as you say, the highest priority tasks is creating the zip download, then you should makes sure that that operation can take advantage of multiple cores.
You can accomplish that either with clustering (your whole server runs multiple instances that can each be on a separate core) or by creating a set of processes specifically for creating the zip files and then create a work queue in the main process that feeds these other processes work and gets the result back from them. This second option is likely a bit more complex to code than clustering, but it does prioritize the zip file creation so only one core is serving other server needs and all other cores of working on zip file creation. Clustering shares all cores with all server responsibilities.
At the pure server application level, your server can maintain a work queue of all incoming work to be done no matter what kind and it can prioritize that work. For example, if an API call comes in and there are already N zip file requests in the queue, you could immediately fail the API call to keep it from building up on the server. I don't think I'd personally recommend that solution unless your API calls are really heavy operations because it's very hard for a developer to reliably use your API if it regularly just fails on them. They would generally find it better for the API to just be slow sometimes than to regularly fail.
You might not even have to use a queue, you could just use a counter to keep track of how many ZIP file requests were "in process", but you'd have to make absolutely sure the counter was accurate in all cases. If there was ever an accumulating error in the counter, then you might just end up failing all API requests until your server was restarted.

Related

If multiple jobs exist in the event loop for one process. What happens to the remaining jobs if the current job crashes the process?

In Node.js cluster mode, if multiple jobs exist in the event loop for one process, should the current job crash the process, what happens to the remaining job?
I'm assuming the remaining jobs in the event loop would go unfulfilled or return a server error. My question is, why is this an acceptable risk? Why would someone opt to use Node.js cluster mode in production then, rather than use something like PHP in production, where there is no risk of this, because PHP handles each request in its own process.
Edit:
Obviously this doesn't just apply to Node.js cluster mode. It can happen on a single instance, in which case obviously the end user would just get a server error. Cluster mode just happens to be my personal use case.
I'm looking for a way to pick back up a job in the queue job should a previous job cause the process to exit, before the subsequent job gets a change to be fulfilled. I am currently reading about how you can use a tool like RabbitMQ to handle your job queue outside of the node.js cluster, and each cluster instance just pulls jobs from the RabbitMQ queue. If anyone has any input on that, that would also be greatly appreciated.
If multiple jobs exist in the event loop for one process. What happens to the remaining jobs if the current job crashes the process?
If a node.js process crashes, the same thing happens to it that happens to any other process. All open sockets get automatically disconnected and the client will receive an immediate close on their socket (socket connection dropped essentially).
If you were using a Java server that was in the middle of handling 10 requests (perhaps in threads) and it crashed, the consequences would be the same. All 10 socket connections would get dropped.
If process isolation from one request to another is your #1 criteria for selecting a server environment, then I guess you wouldn't pick any environment that ever serves multiple requests from the same process. But, you would give up a lot of get that. One of the reasons for the node.js design is that is scales really, really well for a high number of concurrent connections that are all doing mostly I/O things (disk, networking, database stuff, etc...) which happens to be most web servers. Whereas a design that fires up a new process for every incoming connection does not scale as well for a large number of concurrent connections because a process is a much more heavy-weight thing in the eyes of the operating system (memory usage, other system resource usage, task switching overhead, etc...) than the way node.js does things.
And, there are obviously hundreds of other considerations too when choosing a server environment. So, you kind of have to look at the whole picture of what you're designing for and make the best set of tradeoffs.
In general, I wouldn't put this issue anywhere on the radar for why you should choose one over the other unless you expect to be running risky code (perhaps out of your control) that crashes a lot and this issue is therefore more important in your deployment than all the other differences. And, if that was the case, I'd probably isolate the risky code to its own process (even when using nodejs) to alleviate any pain from that crash. You could have a process pool waiting to process risky things. For example, if you were running code submitted by a user, I might run that code in its own isolated VM.
If you're just worried about your own code crashing a lot, then you probably have bigger problems and need more extensive unit testing, more robust error handling and need to take advantage of other tools just as a linter and other code analysis tools to find potential problem areas. With proper design, implementation and error handling, you should be able to keep a single incoming request from harming anything other than itself. That's certainly the philosophy that every server environment that serves multiple requests from the same process advises and the people/companies deploying those servers use.

Node.js Clusters with Additional Processes

We use clustering with our express apps on multi cpu boxes. Works well, we get the maximum use out of AWS linux servers.
We inherited an app we are fixing up. It's unusual in that it has two processes. It has an Express API portion, to take incoming requests. But the process that acts on those requests can run for several minutes, so it was build as a seperate background process, node calling python and maya.
Originally the two were tightly coupled, with the python script called by the request to upload the data. But this of course was suboptimal, as it would leave the client waiting for a response for the time it took to run, so it was rewritten as a background process that runs in a loop, checking for new uploads, and processing them sequentially.
So my question is this: if we have this separate node process running in the background, and we run clusters which starts up a process for each CPU, how is that going to work? Are we not going to get two node processes competing for the same CPU. We were getting a bit of weird behaviour and crashing yesterday, without a lot of error messages, (god I love node), so it's bit concerning. I'm assuming Linux will just swap the processes in and out as they are being used. But I wonder if it will be problematic, and I also wonder about someone getting their web session swapped out for several minutes while the longer running process runs.
The smart thing to do would be to rewrite this to run on two different servers, but the files that maya uses/creates are on the server's file system, and we were not given the budget to rebuild the way we should. So, we're stuck with this architecture for now.
Any thoughts now possible problems and how to avoid them would be appreciated.
From an overall architecture prospective, spawning 1 nodejs per core is a great way to go. You have a lot of interdependencies though, the nodejs processes are calling maya which may use mulitple threads (keep that in mind).
The part that is concerning to me is your random crashes and your "process that runs in a loop". If that process is just checking the file system you probably have a race condition where the nodejs processes are competing to work on the same input/output files.
In theory, 1 nodejs process per core will work great and should help to utilize all your CPU usage. Linux always swaps the processes in and out so that is not an issue. You could start multiple nodejs per core and still not have an issue.
One last note, be sure to keep an eye on your memory usage, several linux distributions on EC2 do not have a swap file enabled by default, running out of memory can be another silent app killer, best to add a swap file in case you run into memory issues.

Controlling the flow of requests without dropping them - NodeJS

I have a simple nodejs webserver running, it:
Accepts requests
Spawns separate thread to perform background processing
Background thread returns results
App responds to client
Using Apache benchmark "ab -r -n 100 -c 10", performing 100 requests with 10 at a time.
Average response time of 5.6 seconds.
My logic for using nodejs is that is typically quite resource efficient, especially when the bulk of the work is being done by another process. Seems like the most lightweight webserver option for this scenario.
The Problem
With 10 concurrent requests my CPU was maxed out, which is no surprise since there is CPU intensive work going on the background.
Scaling horizontally is an easy thing to, although I want to make the most out of each server for obvious reasons.
So how with nodejs, either raw or some framework, how can one keep that under control as to not go overkill on the CPU.
Potential Approach?
Could accepting the request storing it in a db or some persistent storage and having a separate process that uses an async library to process x at a time?
In your potential approach, you're basically describing a queue. You can store incoming messages (jobs) there and have each process get one job at the time, only getting the next one when processing the previous job has finished. You could spawn a number of processes working in parallel, like an amount equal to the number of cores in your system. Spawning more won't help performance, because multiple processes sharing a core will just run slower. Keeping one core free might be preferred to keep the system responsive for administrative tasks.
Many different queues exist. A node-based one using redis for persistence that seems to be well supported is Kue (I have no personal experience using it). I found a tutorial for building an implementation with Kue here. Depending on the software your environment is running in though, another choice might make more sense.
Good luck and have fun!

Should each website be its own `node.js` process

We host about 150 websites (possibly scaling to 300+) that we are considering migrating to node.js. Most of the sites are fairly low traffic <1mil pageviews per month.
Should each website be it's own node.js process, or should we serve all websites using the same node.js process (or small set of load balanced processes). Is there a technical limit or a reasonable limit to the number of node processes per server?
Process per site: Feels inefficient, but I don't know if it actually is inefficient. Would ensure one buggy site doesn't affect other sites.
Process per core/small set of processes: Likely higher performance, but what happens when I need to update a sites codebase, won't it take down other sites? Also, code failures in one site would affect other sites.
Ideally, I would prefer one process per site so that we could host all sites from each worker server. That way when load increases we can just spin up another identical worker server and load balance between the two without having to arbitrarily say SiteA goes to ServerA and SiteB goes to ServerB. Any node.js gurus available to offer some wisdom?
All static file requests will be handled likely by Nginx or something like Varnish.
There are a lot of issues at play here. The big picture answer is, it depends... as it always does when you bring in the whole "performance" discussion. That being said, the simplest way to get a solid Node set up is to note the following basic facts about NodeJS, and I will also comment on their implications as they pertain to your questions.
The concurrency you get with Node works really good in certain situations, namely IO heavy operations. What we're really talking about here is minimizing the amount of downtime to wait for the next request. Because of this, Node works really well in an environment where there is one process per core on a machine. Node does really well at maximizing the amount of CPU available to serve requests under heavy load. This being said, if you have literally ZERO other work going on in your even loop, you can see minor performance increases (in terms of max requests/second/processor core) by having multiple node processes per core. But, I've never seen any benefit from increasing this number past 3. Even under circumstances where the entire event loop was literally just a file server.
On the process per site comment. This is a bad idea for many reasons. For one, a well put together node server can process thousands of requests per second. Our (company name omitted) servers, hosted through Amazon EC2 on medium clusters (lots of ram, mid CPU clock, 4 cores), typically fail around 3000 requests per second per cluster. Our servers do a fair bit of CPU work, for simple file servers I'm sure you can do much better. Strictly speaking, sure, per site, you will be able to serve more requests by launching each site in its own process/core/escalating quickly here! But it's not necessary from a cost and over complication of your architecture point of view. What I WOULD recommend, is investing in a setup with a lot of RAM. The ability for your server to cache often requested files will effect your performance infinitely more than launching an abundance of processes for a given machine.
On the whole RAM thing. The number of processes you want to launch for a given core is dependant on two things. One is how much synchronous work done in your event loop. The more synchronous work, the more time between a given request coming in and the event loop being ready to adress the next one. If you have a busy event loop, you will be in a situation where you require more processes/CPU Core. The other thing that can effect this, particularly relevant for file servers, is the amount of RAM. Node runs much better in a high ram environment, but you can say this about ANY file server really... What this has to do with, is the number of active asynchronous operations. One downside of the way node works, is under heavy loads, you can get a large number of event handlers active at once. This is great for concurrency/simplicity, however, if your server is busy waiting around for a lot of async disk/IO to happen it will slow down and crash much sooner than if you had plenty of RAM. If you don't have enough RAM to handle all of these event handlers, you will want to keep to the 1 process/core arrangement. Otherwise, it is easier for Node to spin up many event handlers simultaneously, and again cause you to crash sooner than you would otherwise.
I don't really have enough information to tell you what you SHOULD do. This depends entirely too much on the architecture of your specific server, sites, size of your sites, amount of data... etc. But these three pieces of knowledge are the basic things that help you get the most out of your Node server. To be honest, your idea about load balancing mixed with the considerations above, should do nicely for you. Surely, microoptimizations are possible, but if you do these things, you should easily see requests/second in the thousands before you start experiencing crashes because of DDOS type of conditions.
No, don't do it. Keep it simple! And check out http://12factor.net/.
A few hundred processes is nothing compared to the simplicity you otherwise lose. It would be a terrible decision, on so many levels, to have more than one site (or, "logical application unit") served by a single Node process.
If you're asking this question, you may want to explore Node more before you "migrate" to Node. Error handling and separation of concerns are more complicated in Node than in other situations. Specifically, neither the domain nor cluster APIs are mature. But really it's the philosophy of clean and simple application deployment that you'd be violating. I could go on and on.

"Everything runs in parallel except your code".. wait what?

I am trying to learn Node.js and some of points that I understand:
Node.js does'nt create a seperate process for each request, instead it is just one process which processes all requests.
It is asynchronous which means you can attach a callback to a long-lasting process and continue your rest of the work without waiting for it to finish.
What I really don't understand is author's point in Understanding node.js - "Everything runs in parallel except your code". I have understood the analogy and the code that explains it but still I don't get it what is the distinction between "Everything" and "code". I have more often heard this about node.js.
Also, people pat node.js for its efficiency since memory overhead for one concurrent connection may be as low as 8KB but what about CPU load. Does node.js make it way less as compared to PHP+Apache?
Node.js uses a single thread any time it is running the JavaScript in your application. Tasks that are asynchronous (network, filesystem, etc.) are all handled on separate threads automatically for you. This means that you get much of the usefulness of a multithreaded application without having to worry about all of the trouble that comes with locking resources and what not.
Node is not a tool for every job. It is ideal for applications that are IO bound. For example, if your application required a ton of work to process templates and what not, Node probably isn't for you. If instead you're just shuffling data around, Node can be very effective.
The reason Node is often quoted as being faster than servers like Apache is that it doesn't create a thread and all of the resources with it to handling requests. In Apache, most of the time, that thread handling requests is waiting on network or filesystem data. While it does this, it is wasting resources. With Node, only one thread processes those requests (in your application). Again, this is great for some things, but if you have a lot of processing to do, Node would not be effective as it can really only handle a single request at a time in these situations.
This video does a pretty good job of explaining: http://www.youtube.com/watch?v=F6k8lTrAE2g&feature=youtube_gdata
Everything runs in parallel except your code.
It means if you do
while(true){}
anywhere in your code the entire node application will stop. While the code you write executes, nothing else does. Requests will not be handled, responses won't be returned, nothing. You have to be extremely careful to not hog the cpu in node.
but what about CPU load?
That completely depends on the nature of your application and the load. If your app is busy, it'll use more cpu.
Imagine a busy intersection with a traffic cop in the middle. When the cop is doing his job properly, hundreds of cars can pass through the intersection in a very fast and efficient way.
If the cop starts receiving and answering SMS messages on his cell while doing traffic, then things might go out of hand really quickly.
The traffic cop is your node.js app, and the time he spends doing SMS is what the author refers to as "your code".
In other words: node.js performance will shine the more you use it as a traffic cop. The more you start using it to do things other than pulling and pushing data (i.e.: sorting a list of numbers, rendering an html template, etc.), the more your capacity to accept and process new connections quickly will suffer.
"Everything" refers to everything else besides your code. For example, the stuff that handles HTTP. Another way to say the same thing is "your code doesn't wait for node.js to do stuff, like send data over TCP, because that's done asynchronously."
To answer your second question, I don't know which has less CPU load, I'm guessing they're similar. Node.js' touted advantage is the CPU is better utilized due to the aforementioned asynchronicity.

Resources