We use clustering with our express apps on multi cpu boxes. Works well, we get the maximum use out of AWS linux servers.
We inherited an app we are fixing up. It's unusual in that it has two processes. It has an Express API portion, to take incoming requests. But the process that acts on those requests can run for several minutes, so it was build as a seperate background process, node calling python and maya.
Originally the two were tightly coupled, with the python script called by the request to upload the data. But this of course was suboptimal, as it would leave the client waiting for a response for the time it took to run, so it was rewritten as a background process that runs in a loop, checking for new uploads, and processing them sequentially.
So my question is this: if we have this separate node process running in the background, and we run clusters which starts up a process for each CPU, how is that going to work? Are we not going to get two node processes competing for the same CPU. We were getting a bit of weird behaviour and crashing yesterday, without a lot of error messages, (god I love node), so it's bit concerning. I'm assuming Linux will just swap the processes in and out as they are being used. But I wonder if it will be problematic, and I also wonder about someone getting their web session swapped out for several minutes while the longer running process runs.
The smart thing to do would be to rewrite this to run on two different servers, but the files that maya uses/creates are on the server's file system, and we were not given the budget to rebuild the way we should. So, we're stuck with this architecture for now.
Any thoughts now possible problems and how to avoid them would be appreciated.
From an overall architecture prospective, spawning 1 nodejs per core is a great way to go. You have a lot of interdependencies though, the nodejs processes are calling maya which may use mulitple threads (keep that in mind).
The part that is concerning to me is your random crashes and your "process that runs in a loop". If that process is just checking the file system you probably have a race condition where the nodejs processes are competing to work on the same input/output files.
In theory, 1 nodejs process per core will work great and should help to utilize all your CPU usage. Linux always swaps the processes in and out so that is not an issue. You could start multiple nodejs per core and still not have an issue.
One last note, be sure to keep an eye on your memory usage, several linux distributions on EC2 do not have a swap file enabled by default, running out of memory can be another silent app killer, best to add a swap file in case you run into memory issues.
Related
In Node.js cluster mode, if multiple jobs exist in the event loop for one process, should the current job crash the process, what happens to the remaining job?
I'm assuming the remaining jobs in the event loop would go unfulfilled or return a server error. My question is, why is this an acceptable risk? Why would someone opt to use Node.js cluster mode in production then, rather than use something like PHP in production, where there is no risk of this, because PHP handles each request in its own process.
Edit:
Obviously this doesn't just apply to Node.js cluster mode. It can happen on a single instance, in which case obviously the end user would just get a server error. Cluster mode just happens to be my personal use case.
I'm looking for a way to pick back up a job in the queue job should a previous job cause the process to exit, before the subsequent job gets a change to be fulfilled. I am currently reading about how you can use a tool like RabbitMQ to handle your job queue outside of the node.js cluster, and each cluster instance just pulls jobs from the RabbitMQ queue. If anyone has any input on that, that would also be greatly appreciated.
If multiple jobs exist in the event loop for one process. What happens to the remaining jobs if the current job crashes the process?
If a node.js process crashes, the same thing happens to it that happens to any other process. All open sockets get automatically disconnected and the client will receive an immediate close on their socket (socket connection dropped essentially).
If you were using a Java server that was in the middle of handling 10 requests (perhaps in threads) and it crashed, the consequences would be the same. All 10 socket connections would get dropped.
If process isolation from one request to another is your #1 criteria for selecting a server environment, then I guess you wouldn't pick any environment that ever serves multiple requests from the same process. But, you would give up a lot of get that. One of the reasons for the node.js design is that is scales really, really well for a high number of concurrent connections that are all doing mostly I/O things (disk, networking, database stuff, etc...) which happens to be most web servers. Whereas a design that fires up a new process for every incoming connection does not scale as well for a large number of concurrent connections because a process is a much more heavy-weight thing in the eyes of the operating system (memory usage, other system resource usage, task switching overhead, etc...) than the way node.js does things.
And, there are obviously hundreds of other considerations too when choosing a server environment. So, you kind of have to look at the whole picture of what you're designing for and make the best set of tradeoffs.
In general, I wouldn't put this issue anywhere on the radar for why you should choose one over the other unless you expect to be running risky code (perhaps out of your control) that crashes a lot and this issue is therefore more important in your deployment than all the other differences. And, if that was the case, I'd probably isolate the risky code to its own process (even when using nodejs) to alleviate any pain from that crash. You could have a process pool waiting to process risky things. For example, if you were running code submitted by a user, I might run that code in its own isolated VM.
If you're just worried about your own code crashing a lot, then you probably have bigger problems and need more extensive unit testing, more robust error handling and need to take advantage of other tools just as a linter and other code analysis tools to find potential problem areas. With proper design, implementation and error handling, you should be able to keep a single incoming request from harming anything other than itself. That's certainly the philosophy that every server environment that serves multiple requests from the same process advises and the people/companies deploying those servers use.
I'm running electron on linux server for web scraping. And currently I'm running new electron command for each task. But it results in high cpu usage. Now thinking about running single electron instance, and create new BrowserWindow for each task. It will take some time to adapt the code base for this style, so I wanted to ask here first. Will it make a difference in cpu usage, and how much?
Basically, creating a new NodeJS process will result in re-parsing your application's code, which will highly affect your CPU usage. Creating only a new BrowserWindow will only create a new renderer process, which is way more efficient.
If your application is packaged, e.g. with electron-packager, then creating a new instance will also affect your CPU usage like creating another NodeJS process, because that packaged (aka compiled) application has a copy of NodeJS in it, which is enough to run your code, but still affects the CPU usage.
But the decision depends on how you use the server. If you only run the Electron application to carry out the tasks that have been defined by you, adapting your working code would have no to only a low benefit. If you want to release this application and/or that server is used by some other tasks, e.g. a web server, it would be a real benefit if you adapt your code.
Running multiple instances of the main nodejs process with the default configuration is not actually supported or tested. You'll find that any features that persists data to disk either don't work, or don't work as expected (ie. localstorage, indexeddb, sessions, etc).
https://github.com/electron/electron/issues/2493
You can work around this by changing the data directory for each instance so they don't trample over each other but this is likely to use a lot of disk space and you'd need a way to keep track of all these data directories.
A single main process with multiple renderers is nearly always the answer.
We have a node application running on the server that gets hit a lot and has to compile a zip file for download. That works well so far but I am nervous we will hit a point where performance becomes an issue.
(The application is currently running with forever on a ubuntu 14.04 machine.)
I am now asked to add all kinds of new features to the app which are more secondary and should not decrease the performance of the main function (the zip download). It would be OK to have those additional features fail in case the app is hit too many times in favour of the main zipping process.
What is the best practise here. Creating a REST API for the secondary features and put everything into a waiting list? It surely isn't enough to just create a second app and spawn a new process each time the main zip process finishes? How Can I ensure the most redundancy? I'm not talking about a multi-core cluster setup or load-balancing on NGINX, but a smart way of prioritising application functions on application level.
I hope this is not too broad. Cheers
First off, everything should be using async I/O, no synchronous I/O anywhere in your server. That's the #1 rule for building a scalable node.js server.
Second off, the highest priority tasks that have any significant CPU usage should be allowed to use multiple cores. If, as you say, the highest priority tasks is creating the zip download, then you should makes sure that that operation can take advantage of multiple cores.
You can accomplish that either with clustering (your whole server runs multiple instances that can each be on a separate core) or by creating a set of processes specifically for creating the zip files and then create a work queue in the main process that feeds these other processes work and gets the result back from them. This second option is likely a bit more complex to code than clustering, but it does prioritize the zip file creation so only one core is serving other server needs and all other cores of working on zip file creation. Clustering shares all cores with all server responsibilities.
At the pure server application level, your server can maintain a work queue of all incoming work to be done no matter what kind and it can prioritize that work. For example, if an API call comes in and there are already N zip file requests in the queue, you could immediately fail the API call to keep it from building up on the server. I don't think I'd personally recommend that solution unless your API calls are really heavy operations because it's very hard for a developer to reliably use your API if it regularly just fails on them. They would generally find it better for the API to just be slow sometimes than to regularly fail.
You might not even have to use a queue, you could just use a counter to keep track of how many ZIP file requests were "in process", but you'd have to make absolutely sure the counter was accurate in all cases. If there was ever an accumulating error in the counter, then you might just end up failing all API requests until your server was restarted.
I have an app in NodeJS.
Recently we have been getting a lot more traffic (this is a new experience for me) and so I have been running into the "EMFILE: too many open files" error that is caused when a single process tries to open more files than the filesystem allows.
I have increased this limit, so we are good for now. However I'm not sure how long this solution will last...
I am wondering: What are other commonly used options for scaling a Node Application that is getting increasing amounts of traffic? (specifically with a mind to the open files limit problem.)
The PM2 process manager which allows clustering catches my eye (am I correct in understanding that every instance of the application requires it's own core -- ie you can't run 4 instances on a single core?). Are there any other techniques that are regularly used?
Thanks (in advance)
PM2 is a simple solution when you want to run more than one instance of Node, another common alternative is the cluster module http://nodejs.org/api/cluster.html Keep in mind, that you will need to configure another http server such as Nginx to reverse proxy your user requests to your Node processes.
You can run any number of Node processes, regardless of the amount of cores. But since each node process is a single thread, and each core can execute a single thread a time, the optimal configuration is when the number of cores match the number of Node processes. If the number of Node processes is greater than the number of cores, under load, you will experience reduced performance due to redundant context switches your processor will have to perform.
I have a simple nodejs webserver running, it:
Accepts requests
Spawns separate thread to perform background processing
Background thread returns results
App responds to client
Using Apache benchmark "ab -r -n 100 -c 10", performing 100 requests with 10 at a time.
Average response time of 5.6 seconds.
My logic for using nodejs is that is typically quite resource efficient, especially when the bulk of the work is being done by another process. Seems like the most lightweight webserver option for this scenario.
The Problem
With 10 concurrent requests my CPU was maxed out, which is no surprise since there is CPU intensive work going on the background.
Scaling horizontally is an easy thing to, although I want to make the most out of each server for obvious reasons.
So how with nodejs, either raw or some framework, how can one keep that under control as to not go overkill on the CPU.
Potential Approach?
Could accepting the request storing it in a db or some persistent storage and having a separate process that uses an async library to process x at a time?
In your potential approach, you're basically describing a queue. You can store incoming messages (jobs) there and have each process get one job at the time, only getting the next one when processing the previous job has finished. You could spawn a number of processes working in parallel, like an amount equal to the number of cores in your system. Spawning more won't help performance, because multiple processes sharing a core will just run slower. Keeping one core free might be preferred to keep the system responsive for administrative tasks.
Many different queues exist. A node-based one using redis for persistence that seems to be well supported is Kue (I have no personal experience using it). I found a tutorial for building an implementation with Kue here. Depending on the software your environment is running in though, another choice might make more sense.
Good luck and have fun!