So, in Spark when an application is started then an RDD containing the dataset for the application (e.g. words dataset for WordCount) is created.
So far what I understand is that RDD is a collection of those words in WordCount and the operations that have been done to those dataset (e.g. map, reduceByKey, etc...)
However, afaik, Spark also has HadoopPartition (or in general: partition) which is read by every executor from HDFS. And I believe that an RDD in driver also contains all of these partitions.
So, what is getting divided among executors in Spark? Does every executor get those sub-dataset as a single RDD which contains less data compared to RDD in the driver or does every executor only deals with these partitions and read them directly from HDFS? Also, when are the partitions created? On the RDD creation?
Partitions are configurable provided the RDD is key-value based.
There are 3 main partition's property:
Tuples in the same partition are guaranteed to be in the same
machine.
Each node in a cluster can contain more than one partition.
The total number of partitions are configurable, by default it is
set to the total number of cores on all the executor nodes.
Spark supports two types of partitioning:
Hash Partitioning
Range Partitioning
When Spark reads a file from HDFS, it creates a single partition for a single input split. Input split is set by the Hadoop InputFormat used to read this file.
When you call rdd.repartition(x) it would perform a shuffle of the data from N partitions you have in rdd to x partitions you want to have, partitioning would be done on round robin basis.
Please see more details here and here
Your RDD have rows in it. If it is a text file, it have lines separated by \n.
Those rows are getting divided into partitions across different nodes in Spark cluster.
Related
I know that an RDD is partitioned based on the key values using the HashPartitioner. But how is a Spark Dataframe partitioned by default as it does not have the concept of key/value.
A Dataframe is partitioned dependent on the number of tasks that run to create it.
There is no "default" partitioning logic applied. Here are some examples how partitions are set:
A Dataframe created through val df = Seq(1 to 500000: _*).toDF() will have only a single partition.
A Dataframe created through val df = spark.range(0,100).toDF() has as many partitions as the number of available cores (e.g. 4 when your master is set to local[4]). Also, see remark below on the "default parallelism" that comes into effect for operations like parallelize with no parent RDD.
A Dataframe derived from an RDD (spark.createDataFrame(rdd, schema)) will have the same amount of partitions as the underlying RDD. In my case, as I have locally 6 cores, the RDD got created with 6 partitions.
A Dataframe consuming from a Kafka topic will have the amount of partitions matching with the partitions of the topic because it can use as many cores/slots as the topic has partitions to consume the topic.
A Dataframe created by reading a file e.g. from HDFS will have the amount of partitions matching them of the file unless individual files have to be splitted into multiple partitions based on spark.sql.files.maxPartitionBytes which defaults to 128MB.
A Dataframe derived from a transformation requiring a shuffle will have the configurable amount of partitions set by spark.sql.shuffle.partitions (200 by default).
...
One of the major disctinctions between RDD and Structured API is that you do not have as much control over the partitions as you have with RDDs where you can even define a custom partitioner. This is not possible with Dataframes.
Default Parallelism
The documentation of the Execution Behavior configuration spark.default.parallelism explains:
For operations like parallelize with no parent RDDs, it depends on the cluster manager:
Local mode: number of cores on the local machine
Mesos fine grained mode: 8
Others: total number of cores on all executor nodes or 2, whichever is larger
How the number of partitions is decided by Spark when a file is read ?
Suppose we have a 10 GB single file in a hdfs directory and multiple part files of total 10 GB volume a another hdfs location .
If these two files are read in two separate spark data frames what would be their number of partitions and based on what logic ?
Found the information in How to: determine partition
It says:
How is this number determined? The way Spark groups RDDs into stages is described in the previous post. (As a quick reminder, transformations like repartition and reduceByKey induce stage boundaries.) The number of tasks in a stage is the same as the number of partitions in the last RDD in the stage. The number of partitions in an RDD is the same as the number of partitions in the RDD on which it depends, with a couple exceptions: thecoalesce transformation allows creating an RDD with fewer partitions than its parent RDD, the union transformation creates an RDD with the sum of its parents’ number of partitions, and cartesian creates an RDD with their product.
What about RDDs with no parents? RDDs produced by textFile or hadoopFile have their partitions determined by the underlying MapReduce InputFormat that’s used. Typically there will be a partition for each HDFS block being read. Partitions for RDDs produced by parallelize come from the parameter given by the user, or spark.default.parallelism if none is given.
When Spark reads a file from HDFS, it creates a single partition for a single input split. Input split is set by the Hadoop InputFormat used to read this file. For instance, if you use textFile() it would be TextInputFormat in Hadoop, which would return you a single partition for a single block of HDFS (but the split between partitions would be done on line split, not the exact block split), unless you have a compressed text file. In case of compressed file you would get a single partition for a single file (as compressed text files are not splittable).
If you have a 10GB uncompressed text file stored on HDFS, then with the default HDFS block size setting (128MB) it would be stored in 79 blocks, which means that the RDD you read from this file would have 79 partitions.
Also, we can pass the number of partitions we want if we are not satisfied by the number of partitions provided by spark by default as shown below:
>>> rdd1 = sc.textFile("statePopulations.csv",10) // 10 is number of partitions
I use Spark 2.
Actually I am not the one executing the queries so I cannot include query plans. I have been asked this question by the data science team.
We are having hive table partitioned into 2000 partitions and stored in parquet format. When this respective table is used in spark, there are exactly 2000 tasks that are executed among the executors. But we have a block size of 256 MB and we are expecting the (total size/256) number of partitions which will be much lesser than 2000 for sure. Is there any internal logic that spark uses physical structure of data to create partitions. Any reference/help would be greatly appreciated.
UPDATE: It is the other way around. Actually our table is very huge like 3 TB having 2000 partitions. 3TB/256MB would actually come to 11720 but we are having exactly same number of partitions as the table is partitioned physically. I just want to understand how the tasks are generated on data volume.
In general Hive partitions are not mapped 1:1 to Spark partitions. 1 Hive partition can be split into multiple Spark partitions, and one Spark partition can hold multiple hive-partitions.
The number of Spark partitions when you load a hive-table depends on the parameters:
spark.files.maxPartitionBytes (default 128MB)
spark.files.openCostInBytes (default 4MB)
You can check the partitions e.g. using
spark.table(yourtable).rdd.partitions
This will give you an Array of FilePartitions which contain the physical path of your files.
Why you got exactly 2000 Spark partitions from your 2000 hive partitions seems a coincidence to me, in my experience this is very unlikely to happen. Note that the situation in spark 1.6 was different, there the number of spark partitions resembled the number of files on the filesystem (1 spark partition for 1 file, unless the file was very large)
I just want to understand how the tasks are generated on data volume.
Tasks are a runtime artifact and their number is exactly the number of partitions.
The number of tasks does not correlate to data volume in any way. It's a Spark developer's responsibility to have enough partitions to hold the data.
I am running hive queries using HiveContext from my Spark code. No matter which query I run and how much data it is, it always generates 31 partitions. Anybody knows the reason? Is there a predefined/configurable setting for it? I essentially need more partitions.
I using this code snippet to execute hive query:
var pairedRDD = hqlContext.sql(hql).rdd.map(...)
I am using Spark 1.3.1
Thanks,
Nitin
The number of partitions in an RDD is the same as the number of partitions in the RDD on which it depends, with a couple exceptions: the coalesce transformation allows creating an RDD with fewer partitions than its parent RDD, the union transformation creates an RDD with the sum of its parents’ number of partitions, and cartesian creates an RDD with their product.
To increase number of partitions
Use the repartition transformation, which will trigger a shuffle.
Configure your InputFormat to create more splits.
Write the input data out to HDFS with a smaller block size.
This link here has good explanation of how the number of partitions are defined and how to increase the number of partitions.
Suppose I have an input file of size 100MB. It contains large number of points (lat-long pair) in CSV format. What should I do in order to split the input file in 10 10MB files in Apache Spark or how do I customize the split.
Note: I want to process a subset of the points in each mapper.
Spark's abstraction doesn't provide explicit split of data. However you can control the parallelism in several ways.
Assuming you use YARN, HDFS file is automatically split into HDFS blocks and they're processed concurrently when Spark action is running.
Apart from HDFS parallelism, consider using partitioner with PairRDD. PairRDD is data type of RDD of key-value pairs and a partitioner manages mapping from a key to a partition. Default partitioner reads spark.default.parallelism. The partitioner helps to control the distribution of data as well as its locality in PairRDD-specific actions, e.g., reduceByKey.
Take a look at following documentation about Spark data parallelism.
http://spark.apache.org/docs/1.2.0/tuning.html
After searching through the Spark API I have found one method partition which returns the number of partitions of the JavaRDD. At the time of JavaRDD creation we have repartitioned it to desired number of partitions as told by #Nick Chammas.
JavaRDD<String> lines = ctx.textFile("/home/hduser/Spark_programs/file.txt").repartition(5);
List<Partition> partitions = lines.partitions();
System.out.println(partitions.size());