What if function application was a typeclass? - haskell

Suppose Haskell's function application (the "space" operator) were in a typeclass instead of baked into the language. I imagine it would look something like
class Apply f where
($) :: f a r -> a -> r
instance Apply (->) where
($) = builtinFnApply#
And f a would desugar to f $ a. The idea is that this would let you define other types that act like functions, ie
instance Apply LinearMap where
($) = matrixVectorMult
and so on.
Does this make type inference undecidable? My instinct says that it does, but my understanding of type inference stops at plain Hindley-Milner. As a follow up, if it is undecidable, can it be made decidable by outlawing certain pathological instances?

If you can envision this as a syntactic sugar on top of Haskell (replacing the "space operator" with yours), I can't see why this should make type inference any worse than it already is.
I can however see that code might be more ambiguous with this change, e.g.
class C a where get :: a
instance C (Int -> Int) where get = id
instance C Linearmap where get = ...
test = get (5 :: Int) -- actually being (get $ (5 :: Int))
Above get could be picked from both instances, while such ambiguity does not arise in plain Haskell.

Related

Practical applications of Rank 2 polymorphism?

I'm covering polymorphism and I'm trying to see the practical uses of such a feature.
My basic understanding of Rank 2 is:
type MyType = ∀ a. a -> a
subFunction :: a -> a
subFunction el = el
mainFunction :: MyType -> Int
mainFunction func = func 3
I understand that this is allowing the user to use a polymorphic function (subFunction) inside mainFunction and strictly specify it's output (Int). This seems very similar to GADT's:
data Example a where
ExampleInt :: Int -> Example Int
ExampleBool :: Bool -> Example Bool
1) Given the above, is my understanding of Rank 2 polymorphism correct?
2) What are the general situations where Rank 2 polymorphism can be used, as opposed to GADT's, for example?
If you pass a polymorphic function as and argument to a Rank2-polymorphic function, you're essentially passing not just one function but a whole family of functions – for all possible types that fulfill the constraints.
Typically, those forall quantifiers come with a class constraint. For example, I might wish to do number arithmetic with two different types simultaneously (for comparing precision or whatever).
data FloatCompare = FloatCompare {
singlePrecision :: Float
, doublePrecision :: Double
}
Now I might want to modify those numbers through some maths operation. Something like
modifyFloat :: (Num -> Num) -> FloatCompare -> FloatCompare
But Num is not a type, only a type class. I could of course pass a function that would modify any particular number type, but I couldn't use that to modify both a Float and a Double value, at least not without some ugly (and possibly lossy) converting back and forth.
Solution: Rank-2 polymorphism!
modifyFloat :: (∀ n . Num n => n -> n) -> FloatCompare -> FloatCompare
mofidyFloat f (FloatCompare single double)
= FloatCompare (f single) (f double)
The best single example of how this is useful in practice are probably lenses. A lens is a “smart accessor function” to a field in some larger data structure. It allows you to access fields, update them, gather results... while at the same time composing in a very simple way. How it works: Rank2-polymorphism; every lens is polymorphic, with the different instantiations corresponding to the “getter” / “setter” aspects, respectively.
The go-to example of an application of rank-2 types is runST as Benjamin Hodgson mentioned in the comments. This is a rather good example and there are a variety of examples using the same trick. For example, branding to maintain abstract data type invariants across multiple types, avoiding confusion of differentials in ad, a region-based version of ST.
But I'd actually like to talk about how Haskell programmers are implicitly using rank-2 types all the time. Every type class whose methods have universally quantified types desugars to a dictionary with a field with a rank-2 type. In practice, this is virtually always a higher-kinded type class* like Functor or Monad. I'll use a simplified version of Alternative as an example. The class declaration is:
class Alternative f where
empty :: f a
(<|>) :: f a -> f a -> f a
The dictionary representing this class would be:
data AlternativeDict f = AlternativeDict {
empty :: forall a. f a,
(<|>) :: forall a. f a -> f a -> f a }
Sometimes such an encoding is nice as it allows one to use different "instances" for the same type, perhaps only locally. For example, Maybe has two obvious instances of Alternative depending on whether Just a <|> Just b is Just a or Just b. Languages without type classes, such as Scala, do indeed use this encoding.
To connect to leftaroundabout's reference to lenses, you can view the hierarchy there as a hierarchy of type classes and the lens combinators as simply tools for explicitly building the relevant type class dictionaries. Of course, the reason it isn't actually a hierarchy of type classes is that we usually will have multiple "instances" for the same type. E.g. _head and _head . _tail are both "instances" of Traversal' s a.
* A higher-kinded type class doesn't necessarily lead to this, and it can happen for a type class of kind *. For example:
-- Higher-kinded but doesn't require universal quantification.
class Sum c where
sum :: c Int -> Int
-- Not higher-kinded but does require universal quantification.
class Length l where
length :: [a] -> l
If you are using modules in Haskell, you are already using Rank-2 types. Theoretically speaking, modules are records with rank-2 type properties.
For example, the Foo module below in Haskell ...
module Foo(id) where
id :: forall a. a -> a
id x = x
import qualified Foo
main = do
putStrLn (Foo.id "hello")
return ()
... can actually be thought as a record as follows:
type FooType = FooType {
id :: forall a. a -> a
}
Foo :: FooType
Foo = Foo {
id = \x -> x
}
P/S (unrelated this question): from a language design perspective, if you are going to support module system, then you might as well support higher-rank types (i.e. allow arbitrary quantification of type variables on any level) to reduce duplication of efforts (i.e. type checking a module should be almost the same as type checking a record with higher rank types).

How to work around F#'s type system

In Haskell, you can use unsafeCoerce to override the type system. How to do the same in F#?
For example, to implement the Y-combinator.
I'd like to offer a different solution, based on embedding the untyped lambda calculus in a typed functional language. The idea is to create a data type that allows us to change between types α and α → α, which subsequently allows to escape the restrictions of a type system. I'm not very familiar with F# so I'll give my answer in Haskell, but I believe it could be adapted easily (perhaps the only complication could be F#'s strictness).
-- | Roughly represents morphism between #a# and #a -> a#.
-- Therefore we can embed a arbitrary closed λ-term into #Any a#. Any time we
-- need to create a λ-abstraction, we just nest into one #Any# constructor.
--
-- The type parameter allows us to embed ordinary values into the type and
-- retrieve results of computations.
data Any a = Any (Any a -> a)
Note that the type parameter isn't significant for combining terms. It just allows us to embed values into our representation and extract them later. All terms of a particular type Any a can be combined freely without restrictions.
-- | Embed a value into a λ-term. If viewed as a function, it ignores its
-- input and produces the value.
embed :: a -> Any a
embed = Any . const
-- | Extract a value from a λ-term, assuming it's a valid value (otherwise it'd
-- loop forever).
extract :: Any a -> a
extract x#(Any x') = x' x
With this data type we can use it to represent arbitrary untyped lambda terms. If we want to interpret a value of Any a as a function, we just unwrap its constructor.
First let's define function application:
-- | Applies a term to another term.
($$) :: Any a -> Any a -> Any a
(Any x) $$ y = embed $ x y
And λ abstraction:
-- | Represents a lambda abstraction
l :: (Any a -> Any a) -> Any a
l x = Any $ extract . x
Now we have everything we need for creating complex λ terms. Our definitions mimic the classical λ-term syntax, all we do is using l to construct λ abstractions.
Let's define the Y combinator:
-- λf.(λx.f(xx))(λx.f(xx))
y :: Any a
y = l (\f -> let t = l (\x -> f $$ (x $$ x))
in t $$ t)
And we can use it to implement Haskell's classical fix. First we'll need to be able to embed a function of a -> a into Any a:
embed2 :: (a -> a) -> Any a
embed2 f = Any (f . extract)
Now it's straightforward to define
fix :: (a -> a) -> a
fix f = extract (y $$ embed2 f)
and subsequently a recursively defined function:
fact :: Int -> Int
fact = fix f
where
f _ 0 = 1
f r n = n * r (n - 1)
Note that in the above text there is no recursive function. The only recursion is in the Any data type, which allows us to define y (which is also defined non-recursively).
In Haskell, unsafeCoerce has the type a -> b and is generally used to assert to the compiler that the thing being coerced actually has the destination type and it's just that the type-checker doesn't know it.
Another, less common use, is to reinterpret a pattern of bits as another type. For example an unboxed Double# could be reinterpreted as an unboxed Int64#. You have to be sure about the underlying representations for this to be safe.
In F#, the first application can be achieved with box |> unbox as John Palmer said in a comment on the question. If possible use explicit type arguments to make sure that you don't accidentally have the wrong coercion inferred, e.g. box<'a> |> unbox<'b> where 'a and 'b are type variables or concrete types that are already in scope in your code.
For the second application, look at the BitConverter class for specific conversions of bit-patterns. In theory you could also do something like interfacing with unmanaged code to achieve this, but that seems very heavyweight.
These techniques won't work for implementing the Y combinator because the cast is only valid if the runtime objects actually do have the target type, but with the Y combinator you actually need to call the same function again but with a different type. For this you need the kinds of encoding tricks mentioned in the question John Palmer linked to.

What is the purpose of Rank2Types?

I am not really proficient in Haskell, so this might be a very easy question.
What language limitation do Rank2Types solve? Don't functions in Haskell already support polymorphic arguments?
It's hard to understand higher-rank polymorphism unless you study System F directly, because Haskell is designed to hide the details of that from you in the interest of simplicity.
But basically, the rough idea is that polymorphic types don't really have the a -> b form that they do in Haskell; in reality, they look like this, always with explicit quantifiers:
id :: ∀a.a → a
id = Λt.λx:t.x
If you don't know the "∀" symbol, it's read as "for all"; ∀x.dog(x) means "for all x, x is a dog." "Λ" is capital lambda, used for abstracting over type parameters; what the second line says is that id is a function that takes a type t, and then returns a function that's parametrized by that type.
You see, in System F, you can't just apply a function like that id to a value right away; first you need to apply the Λ-function to a type in order to get a λ-function that you apply to a value. So for example:
(Λt.λx:t.x) Int 5 = (λx:Int.x) 5
= 5
Standard Haskell (i.e., Haskell 98 and 2010) simplifies this for you by not having any of these type quantifiers, capital lambdas and type applications, but behind the scenes GHC puts them in when it analyzes the program for compilation. (This is all compile-time stuff, I believe, with no runtime overhead.)
But Haskell's automatic handling of this means that it assumes that "∀" never appears on the left-hand branch of a function ("→") type. Rank2Types and RankNTypes turn off those restrictions and allow you to override Haskell's default rules for where to insert forall.
Why would you want to do this? Because the full, unrestricted System F is hella powerful, and it can do a lot of cool stuff. For example, type hiding and modularity can be implemented using higher-rank types. Take for example a plain old function of the following rank-1 type (to set the scene):
f :: ∀r.∀a.((a → r) → a → r) → r
To use f, the caller first must choose what types to use for r and a, then supply an argument of the resulting type. So you could pick r = Int and a = String:
f Int String :: ((String → Int) → String → Int) → Int
But now compare that to the following higher-rank type:
f' :: ∀r.(∀a.(a → r) → a → r) → r
How does a function of this type work? Well, to use it, first you specify which type to use for r. Say we pick Int:
f' Int :: (∀a.(a → Int) → a → Int) → Int
But now the ∀a is inside the function arrow, so you can't pick what type to use for a; you must apply f' Int to a Λ-function of the appropriate type. This means that the implementation of f' gets to pick what type to use for a, not the caller of f'. Without higher-rank types, on the contrary, the caller always picks the types.
What is this useful for? Well, for many things actually, but one idea is that you can use this to model things like object-oriented programming, where "objects" bundle some hidden data together with some methods that work on the hidden data. So for example, an object with two methods—one that returns an Int and another that returns a String, could be implemented with this type:
myObject :: ∀r.(∀a.(a → Int, a -> String) → a → r) → r
How does this work? The object is implemented as a function that has some internal data of hidden type a. To actually use the object, its clients pass in a "callback" function that the object will call with the two methods. For example:
myObject String (Λa. λ(length, name):(a → Int, a → String). λobjData:a. name objData)
Here we are, basically, invoking the object's second method, the one whose type is a → String for an unknown a. Well, unknown to myObject's clients; but these clients do know, from the signature, that they will be able to apply either of the two functions to it, and get either an Int or a String.
For an actual Haskell example, below is the code that I wrote when I taught myself RankNTypes. This implements a type called ShowBox which bundles together a value of some hidden type together with its Show class instance. Note that in the example at the bottom, I make a list of ShowBox whose first element was made from a number, and the second from a string. Since the types are hidden by using the higher-rank types, this doesn't violate type checking.
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ImpredicativeTypes #-}
type ShowBox = forall b. (forall a. Show a => a -> b) -> b
mkShowBox :: Show a => a -> ShowBox
mkShowBox x = \k -> k x
-- | This is the key function for using a 'ShowBox'. You pass in
-- a function #k# that will be applied to the contents of the
-- ShowBox. But you don't pick the type of #k#'s argument--the
-- ShowBox does. However, it's restricted to picking a type that
-- implements #Show#, so you know that whatever type it picks, you
-- can use the 'show' function.
runShowBox :: forall b. (forall a. Show a => a -> b) -> ShowBox -> b
-- Expanded type:
--
-- runShowBox
-- :: forall b. (forall a. Show a => a -> b)
-- -> (forall b. (forall a. Show a => a -> b) -> b)
-- -> b
--
runShowBox k box = box k
example :: [ShowBox]
-- example :: [ShowBox] expands to this:
--
-- example :: [forall b. (forall a. Show a => a -> b) -> b]
--
-- Without the annotation the compiler infers the following, which
-- breaks in the definition of 'result' below:
--
-- example :: forall b. [(forall a. Show a => a -> b) -> b]
--
example = [mkShowBox 5, mkShowBox "foo"]
result :: [String]
result = map (runShowBox show) example
PS: for anybody reading this who's wondered how come ExistentialTypes in GHC uses forall, I believe the reason is because it's using this sort of technique behind the scenes.
Do not functions in Haskell already support polymorphic arguments?
They do, but only of rank 1. This means that while you can write a function that takes different types of arguments without this extension, you can't write a function that uses its argument as different types in the same invocation.
For example the following function can't be typed without this extension because g is used with different argument types in the definition of f:
f g = g 1 + g "lala"
Note that it's perfectly possible to pass a polymorphic function as an argument to another function. So something like map id ["a","b","c"] is perfectly legal. But the function may only use it as monomorphic. In the example map uses id as if it had type String -> String. And of course you can also pass a simple monomorphic function of the given type instead of id. Without rank2types there is no way for a function to require that its argument must be a polymorphic function and thus also no way to use it as a polymorphic function.
Luis Casillas's answer gives a lot of great info about what rank 2 types mean, but I'll just expand on one point he didn't cover. Requiring an argument to be polymorphic doesn't just allow it to be used with multiple types; it also restricts what that function can do with its argument(s) and how it can produce its result. That is, it gives the caller less flexibility. Why would you want to do that? I'll start with a simple example:
Suppose we have a data type
data Country = BigEnemy | MediumEnemy | PunyEnemy | TradePartner | Ally | BestAlly
and we want to write a function
f g = launchMissilesAt $ g [BigEnemy, MediumEnemy, PunyEnemy]
that takes a function that's supposed to choose one of the elements of the list it's given and return an IO action launching missiles at that target. We could give f a simple type:
f :: ([Country] -> Country) -> IO ()
The problem is that we could accidentally run
f (\_ -> BestAlly)
and then we'd be in big trouble! Giving f a rank 1 polymorphic type
f :: ([a] -> a) -> IO ()
doesn't help at all, because we choose the type a when we call f, and we just specialize it to Country and use our malicious \_ -> BestAlly again. The solution is to use a rank 2 type:
f :: (forall a . [a] -> a) -> IO ()
Now the function we pass in is required to be polymorphic, so \_ -> BestAlly won't type check! In fact, no function returning an element not in the list it is given will typecheck (although some functions that go into infinite loops or produce errors and therefore never return will do so).
The above is contrived, of course, but a variation on this technique is key to making the ST monad safe.
Higher-rank types aren't as exotic as the other answers have made out. Believe it or not, many object-oriented languages (including Java and C#!) feature them. (Of course, no one in those communities knows them by the scary-sounding name "higher-rank types".)
The example I'm going to give is a textbook implementation of the Visitor pattern, which I use all the time in my daily work. This answer is not intended as an introduction to the visitor pattern; that knowledge is readily available elsewhere.
In this fatuous imaginary HR application, we wish to operate on employees who may be full-time permanent staff or temporary contractors. My preferred variant of the Visitor pattern (and indeed the one which is relevant to RankNTypes) parameterises the visitor's return type.
interface IEmployeeVisitor<T>
{
T Visit(PermanentEmployee e);
T Visit(Contractor c);
}
class XmlVisitor : IEmployeeVisitor<string> { /* ... */ }
class PaymentCalculator : IEmployeeVisitor<int> { /* ... */ }
The point is that a number of visitors with different return types can all operate on the same data. This means IEmployee must express no opinion as to what T ought to be.
interface IEmployee
{
T Accept<T>(IEmployeeVisitor<T> v);
}
class PermanentEmployee : IEmployee
{
// ...
public T Accept<T>(IEmployeeVisitor<T> v)
{
return v.Visit(this);
}
}
class Contractor : IEmployee
{
// ...
public T Accept<T>(IEmployeeVisitor<T> v)
{
return v.Visit(this);
}
}
I wish to draw your attention to the types. Observe that IEmployeeVisitor universally quantifies its return type, whereas IEmployee quantifies it inside its Accept method - that is to say, at a higher rank. Translating clunkily from C# to Haskell:
data IEmployeeVisitor r = IEmployeeVisitor {
visitPermanent :: PermanentEmployee -> r,
visitContractor :: Contractor -> r
}
newtype IEmployee = IEmployee {
accept :: forall r. IEmployeeVisitor r -> r
}
So there you have it. Higher-rank types show up in C# when you write types containing generic methods.
For those familiar with object oriented languages, a higher-rank function is simply a generic function that expects as its argument another generic function.
E.g. in TypeScript you could write:
type WithId<T> = T & { id: number }
type Identifier = <T>(obj: T) => WithId<T>
type Identify = <TObj>(obj: TObj, f: Identifier) => WithId<TObj>
See how the generic function type Identify demands a generic function of the type Identifier? This makes Identify a higher-rank function.

Explicitly determining which pure function to use

One of the examples from Learn You a Haskell is:
pure (+) <*> Just 3 <*> Just 5
He states:
So at first, we have pure (+), which is Just (+)
I'm assuming that Haskell is using type inference on the <*> function to determine that the pure function on the LHS will be the one from the Maybe instance of the Applicative type class (based on the fact we're using Just 5 on the RHS, and Just is a Maybe).
However, is there ever a case where you have a value you'd like to turn into an Applicative Functor using the pure method, but you aren't going to use it right away via the <*> function and thus Haskell can't determine which pure function to use? If so, how would you be explicit state which pure function to use?
Or, is it the case that Haskell won't try to determine which pure function until the result of the pure function is used in some context (such as when you feed it to a <*> function at some point)
You would give it a type annotation. If you were defining it as a variable, you would use a top-level type signature:
foo :: Maybe (Integer -> Integer -> Integer)
foo = pure (+)
(This also works in let and where clauses.)
Or if you were using it in an expression, you'd write (pure (+) :: Maybe (Integer -> Integer -> Integer)).
You can also get the relevant pure function without having to apply it to an argument. Since we have:
pure :: (Applicative f) => a -> f a
...we can say (pure :: a -> Maybe a) to get a pure of the desired type. But (pure :: a -> Maybe a) (+) is more confusing than pure (+) :: Maybe (Integer -> Integer -> Integer), so the latter is probably more useful in general.
The last sentence of your question is correct, however: you can assign pure (+) to a variable without a type signature, and use it later at a specific concrete type (such as Maybe (Integer -> Integer -> Integer)) without having to use any type annotations at all. (There's a slight restriction: if you define it as a top-level variable without any type signature, then you can only use it as one specific type, not two in different places, due to the monomorphism restriction... but you probably don't need to worry about that.)

Are there "type-level combinators"? Will they exist in some future?

Much of what makes haskell really nice to use in my opinion are combinators such as (.), flip, $ <*> and etc. It feels almost like I can create new syntax when I need to.
Some time ago I was doing something where it would be tremendously convenient if I could "flip" a type constructor. Suppose I have some type constructor:
m :: * -> * -> *
and that I have a class MyClass that needs a type with a type constructor with kind * -> *. Naturally I would choose to code the type in such a way that I can do:
instance MyClass (m a)
But suppose I can't change that code, and suppose that what really fits into MyClass is something like
type w b = m b a
instance MyClass w where
...
and then I'd have to activate XTypeSynonymInstances. Is there some way to create a "type level combinator" Flip such that I can just do:
instance MyClass (Flip m a) where
...
?? Or other type level generalisations of common operators we use in haskell? Is this even useful or am I just rambling?
Edit:
I could do something like:
newtype Flip m a b = Flip (m b a)
newtype Dot m w a = Dot m (w a)
...
But then I'd have to use the data constructors Flip, Dot, ... around for pattern matching and etc. Is it worth it?
Your question makes sense, but the answer is: no, it's not currently possible.
The problem is that (in GHC Haskell's type system) you can't have lambdas at the type level. For anything you might try that looks like it could emulate or achieve the effect of a type level lambda, you will discover that it doesn't work. (I know, because I did.)
What you can do is declare your Flip newtypes, and then write instances of the classes you want for them, painfully with the wrapping and the unwrapping (by the way: use record syntax), and then clients of the classes can use the newtypes in type signatures and not have to worry about the details.
I'm not a type theorist and I don't know the details of why exactly we can't have type level lambdas. I think it was something to do with type inference becoming impossible, but again, I don't really know.
You can do the following, but I don't think its actually very useful, since you still can't really partially apply it:
{-# LANGUAGE TypeFamilies, FlexibleInstances #-}
module Main where
class TFlip a where
type FlipT a
instance TFlip (f a b) where
type FlipT (f a b) = f b a
-- *Main> :t (undefined :: FlipT (Either String Int))
-- (undefined :: FlipT (Either String Int)) :: Either Int [Char]
Also see this previous discussion: Lambda for type expressions in Haskell?
I'm writing answer here just for clarifying things and to tell about achievements in the last years. There're a lot of features in Haskell and now you can write some operators in type. Using $ you can write something like this:
foo :: Int -> Either String $ Maybe $ Maybe Int
to avoid parenthesis instead of good old
foo :: Int -> Either String (Maybe (Maybe Int))

Resources