This question might sound trivial, but even after reading a number of tutorials, I still don't get how the REST security should be implemented.
I have a webpage and soon-to-be-ready mobile app. Both of them will be using the REST API (written in node.js), and the question is - how can I prevent users from modyfing those requests? It's very easy to see the network traffic in the browser, and all the GET/POST requests that are made to the server. It also seems very easy to copy such a request, modify its parameters and/or payload and send it to the server.
How do I make sure that's my webpage or the app who made the request, and not someone else?
Sisyphus is absolutely correct: your focus should be on securing the channel (TLS, SSH, etc) and authentication (e.g. OAuth2).
You should absolutely familiarize yourself with the Open Web Application Security Project (OWASP). In particular, start with:
OWASP Top 10 Cheat Sheet
OWASP REST Security Cheat Sheet
Here is an excellent "hands on" tutorial that gives you a great overview of all the different pieces you need to worry about:
Authenticate a Node.js API with JSON Web Tokens
Once you've gone through the tutorial and scanned the OWASP cheat sheets, you'll have a much better idea of what kinds of things you need to worry about, what options/technologies are available to mitigate those risks, and what might work best for your particular scenario.
Good luck!
Typically, security these days uses a combination of Transport Layer Security and OAuth2. OAuth2 provides authentication and authorisation, ensuring appropriate access to resources, with TLS both securing data over the network and preventing the kind of replay attacks which you're concerned about. Neither are really specific to Restful APIs and you can find them being used in non-Rest contexts also.
Related
Is there any way to restrict post requests to my REST API only to requests coming from my own mobile app binary? This app will be distributed on Google Play and the Apple App Store so it should be implied that someone will have access to its binary and try to reverse engineer it.
I was thinking something involving the app signatures, since every published app must be signed somehow, but I can't figure out how to do it in a secure way. Maybe a combination of getting the app signature, plus time-based hashes, plus app-generated key pairs and the good old security though obscurity?
I'm looking for something as fail proof as possible. The reason why is because I need to deliver data to the app based on data gathered by the phone sensors, and if people can pose as my own app and send data to my api that wasn't processed by my own algorithms, it defeats its purpose.
I'm open to any effective solution, no matter how complicated. Tin foil hat solutions are greatly appreciated.
Any credentials that are stored in the app can be exposed by the user. In the case of Android, they can completely decompile your app and easily retrieve them.
If the connection to the server does not utilize SSL, they can be easily sniffed off the network.
Seriously, anybody who wants the credentials will get them, so don't worry about concealing them. In essence, you have a public API.
There are some pitfalls and it takes extra time to manage a public API.
Many public APIs still track by IP address and implement tarpits to simply slow down requests from any IP address that seems to be abusing the system. This way, legitimate users from the same IP address can still carry on, albeit slower.
You have to be willing to shut off an IP address or IP address range despite the fact that you may be blocking innocent and upstanding users at the same time as the abusers. If your application is free, it may give you more freedom since there is no expected level of service and no contract, but you may want to guard yourself with a legal agreement.
In general, if your service is popular enough that someone wants to attack it, that's usually a good sign, so don't worry about it too much early on, but do stay ahead of it. You don't want the reason for your app's failure to be because users got tired of waiting on a slow server.
Your other option is to have the users register, so you can block by credentials rather than IP address when you spot abuse.
Yes, It's public
This app will be distributed on Google Play and the Apple App Store so it should be implied that someone will have access to its binary and try to reverse engineer it.
From the moment its on the stores it's public, therefore anything sensitive on the app binary must be considered as potentially compromised.
The Difference Between WHO and WHAT is Accessing the API Server
Before I dive into your problem I would like to first clear a misconception about who and what is accessing an API server. I wrote a series of articles around API and Mobile security, and in the article Why Does Your Mobile App Need An Api Key? you can read in detail the difference between who and what is accessing your API server, but I will extract here the main takes from it:
The what is the thing making the request to the API server. Is it really a genuine instance of your mobile app, or is it a bot, an automated script or an attacker manually poking around your API server with a tool like Postman?
The who is the user of the mobile app that we can authenticate, authorize and identify in several ways, like using OpenID Connect or OAUTH2 flows.
Think about the who as the user your API server will be able to Authenticate and Authorize access to the data, and think about the what as the software making that request in behalf of the user.
So if you are not using user authentication in the app, then you are left with trying to attest what is doing the request.
Mobile Apps should be as much dumb as possible
The reason why is because I need to deliver data to the app based on data gathered by the phone sensors, and if people can pose as my own app and send data to my api that wasn't processed by my own algorithms, it defeats its purpose.
It sounds to me that you are saying that you have algorithms running on the phone to process data from the device sensors and then send them to the API server. If so then you should reconsider this approach and instead just collect the sensor values and send them to the API server and have it running the algorithm.
As I said anything inside your app binary is public, because as yourself said, it can be reverse engineered:
should be implied that someone will have access to its binary and try to reverse engineer it.
Keeping the algorithms in the backend will allow you to not reveal your business logic, and at same time you may reject requests with sensor readings that do not make sense(if is possible to do). This also brings you the benefit of not having to release a new version of the app each time you tweak the algorithm or fix a bug in it.
Runtime attacks
I was thinking something involving the app signatures, since every published app must be signed somehow, but I can't figure out how to do it in a secure way.
Anything you do at runtime to protect the request you are about to send to your API can be reverse engineered with tools like Frida:
Inject your own scripts into black box processes. Hook any function, spy on crypto APIs or trace private application code, no source code needed. Edit, hit save, and instantly see the results. All without compilation steps or program restarts.
Your Suggested Solutions
Security is all about layers of defense, thus you should add as many as you can afford and required by law(e.g GDPR in Europe), therefore any of your purposed solutions are one more layer the attacker needs to bypass, and depending on is skill-set and time is willing to spent on your mobile app it may prevent them to go any further, but in the end all of them can be bypassed.
Maybe a combination of getting the app signature, plus time-based hashes, plus app-generated key pairs and the good old security though obscurity?
Even when you use key pairs stored in the hardware trusted execution environment, all an attacker needs to do is to use an instrumentation framework to hook in the function of your code that uses the keys in order to extract or manipulate the parameters and return values of the function.
Android Hardware-backed Keystore
The availability of a trusted execution environment in a system on a chip (SoC) offers an opportunity for Android devices to provide hardware-backed, strong security services to the Android OS, to platform services, and even to third-party apps.
While it can be defeated I still recommend you to use it, because not all hackers have the skill set or are willing to spend the time on it, and I would recommend you to read this series of articles about Mobile API Security Techniques to learn about some complementary/similar techniques to the ones you described. This articles will teach you how API Keys, User Access Tokens, HMAC and TLS Pinning can be used to protect the API and how they can be bypassed.
Possible Better Solutions
Nowadays I see developers using Android SafetyNet to attest what is doing the request to the API server, but they fail to understand it's not intended to attest that the mobile app is what is doing the request, instead it's intended to attest the integrity of the device, and I go in more detail on my answer to the question Android equivalent of ios devicecheck. So should I use it? Yes you should, because it is one more layer of defense, that in this case tells you that your mobile app is not installed in a rooted device, unless SafetyNet has been bypassed.
Is there any way to restrict post requests to my REST API only to requests coming from my own mobile app binary?
You can allow the API server to have an high degree of confidence that is indeed accepting requests only from your genuine app binary by implementing the Mobile App Attestation concept, and I describe it in more detail on this answer I gave to the question How to secure an API REST for mobile app?, specially the sections Securing the API Server and A Possible Better Solution.
Do you want to go the Extra Mile?
In any response to a security question I always like to reference the excellent work from the OWASP foundation.
For APIS
OWASP API Security Top 10
The OWASP API Security Project seeks to provide value to software developers and security assessors by underscoring the potential risks in insecure APIs, and illustrating how these risks may be mitigated. In order to facilitate this goal, the OWASP API Security Project will create and maintain a Top 10 API Security Risks document, as well as a documentation portal for best practices when creating or assessing APIs.
For Mobile Apps
OWASP Mobile Security Project - Top 10 risks
The OWASP Mobile Security Project is a centralized resource intended to give developers and security teams the resources they need to build and maintain secure mobile applications. Through the project, our goal is to classify mobile security risks and provide developmental controls to reduce their impact or likelihood of exploitation.
OWASP - Mobile Security Testing Guide:
The Mobile Security Testing Guide (MSTG) is a comprehensive manual for mobile app security development, testing and reverse engineering.
No. You're publishing a service with a public interface and your app will presumably only communicate via this REST API. Anything that your app can send, anyone else can send also. This means that the only way to secure access would be to authenticate in some way, i.e. keep a secret. However, you are also publishing your apps. This means that any secret in your app is essentially being given out also. You can't have it both ways; you can't expect to both give out your secret and keep it secret.
Though this is an old post, I thought I should share the updates from Google in this regard.
You can actually ensure that your Android application is calling the API using the SafetyNet mobile attestation APIs. This adds a little overhead on the network calls and prevents your application from running in a rooted device.
I found nothing similar like SafetyNet for iOS. Hence in my case, I checked the device configuration first in my login API and took different measures for Android and iOS. In case of iOS, I decided to keep a shared secret key between the server and the application. As the iOS applications are a little bit difficult to reversed engineered, I think this extra key checking adds some protection.
Of course, in both cases, you need to communicate over HTTPS.
As the other answers and comments imply, you cant truly restrict API access to only your app but you can take different measures to reduce the attempts. I believe the best solution is to make requests to your API (from native code of course) with a custom header like "App-Version-Key" (this key will be decided at compile time) and make your server check for this key to decide if it should accept or reject. Also when using this method you SHOULD use HTTPS/SSL as this will reduce the risk of people seeing your key by viewing the request on the network.
Regarding Cordova/Phonegap apps, I will be creating a plugin to do the above mentioned method. I will update this comment when its complete.
there is nothing much you can do. cause when you let some one in they can call your APIs. the most you can do is as below:
since you want only and only your application (with a specific package name and signature) calls your APIs, you can get the signature key of your apk pragmatically and send is to sever in every API call and if thats ok you response to the request. (or you can have a token API that your app calls it every beginning of the app and then use that token for other APIs - though token must be invalidated after some hours of not working with)
then you need to proguard your code so no one sees what you are sending and how you encrypt them. if you do a good encrypt decompiling will be so hard to do.
even signature of apk can be mocked in some hard ways but its the best you can do.
Someone have looked at Firebase App Check ?
https://firebase.google.com/docs/app-check
Is there any way to restrict post requests to my REST API only to requests coming from my own mobile app binary?
I'm not sure if there is an absolute solution.
But, you can reduce unwanted requests.
Use an App Check:
The "Firebase App Check" can be used cross-platform (https://firebase.google.com/docs/app-check) - credit to #Xande-Rasta-Moura
iOS: https://developer.apple.com/documentation/devicecheck
Android: https://android-developers.googleblog.com/2013/01/verifying-back-end-calls-from-android.html
Use BasicAuth (for API requests)
Allow a user-agent header for mobile devices only (for API requests)
Use a robots.txt file to reduce bots
User-agent: *
Disallow: /
I am working on implementing a microservices-based application using node.js. While searching for examples on how to implement the api gateway, I came across the following article that seems to provide an example on implementing the api gateway: https://memz.co/api-gateway-microservices-docker-node-js/. Though, finding example for implementing the api gateway pattern in node.js seems to be a little hard to come by so far, this article seemed to be a really good example.
There are a few items that are still unclear and I am still have issues finding doc. on.
1) Security is a major item for the app. I am developing, I am having trouble seeing where the authentication should take place (i.e. using passport, should I add the authentication items in the api gateway and pass the jwt token along with the request to the corresponding microservice as the user's logged in information is needed for certain activities? The only issue here seems to be that all of the microservices would need passport in order to decrypt the jwt token to get the user's profile information. Would the microservice be technically, inaccessible to the outside world except through the api gateway as this seems to be the aim?
2) How does this scenario change if I need to scale to multiple servers with docker images on each one? How would this affect load balancing, as it seems like something would have to sit at a higher level to deal with load balancing?
I can tell that much depends on your application requirements. Really.
I'm now past the 5 years of experience in production microservices using several languages going from medium to very large scale system.
None of them shared the same requirements, and without having a deep understanding of what you need and what are your business (product) requirements it would be hard to know what's the right answer, by the way I'll try to share some experience to help you get it right.
Ideally you want the security to be encapsulated in an external service, so that you can update and apply new policies faster. Also you'll be able to deprecate all existing tokens should you find a breach in your system or if someone in your team inadvertedly pushes some secret key (or cert) to an external service.
You could handle authentication on each single service or using an edge newtwork tool (such as the API Gateway). Becareful choosing how to handle it because each one has it's own privileges:
Choosing the API Gateway your services will remain lighter and do not need to know anything about the authentication steps, but surely at some point you'll need to know who the authenticated user is and you need some plain reference to it (a JSON record, a link or ID to a "user profile" service). How you do it it's up to your requirements and we can even go deeper talking about different pros and cons about each possible choice applicable for your case.
Choosing to handle it at the service level requires you (and your teams) to understand better about the security process taking place (you can hide it with a good library) and you'll need to give them support from your security team (it's may also be yourself btw you know the more service implementing security, the more things you'll have to think about to avoid adding unnecessary features). The big problem here is that you'll often end up stopping your tasks to think about what would help you out on this particular service and you'll be tempted to extend your authentication service (and God, unless you really know what you're doing, don't add a single call not needed for authentication purposes).
One thing is easy to be determined: you surely need to think about tokens (jwt, jwe or, again, whatever your requirements impose).
JWT has good benefits, but data is exposed to spoofing, so never put in there sensitive data or things you wouldn't publicly share about your user (e.g. an ID is probably fine, while security questions or resolution to 2FA would not). JWE is an encrypted form of the spec. A common token (with no meaning) would require a backend to get the data, but it works much like cookie-sessions and data is not leaving your servers.
You need to define yourself the boundaries of your services and do yourself a favor: make each service boundaries clean, defined and standard.
Try to define common policies and standardize interactions, I know it may be easier to add a queue here, a REST endpoint there, a RPC there, but you'll soon end up with a bunch of IPC you will not be able to handle anymore and it will soon catch your attention.
Also if your business solution is pretty heavy to do I don't think it's a good idea to do yourself the API Gateway, Security and so on. I'd go with open source, community supported (or even company-backed if you have some budget) and production-tested solutions.
By definition microservice architectures are very dynamic, you'll fight to keep it immutable between each deployment version, but unless you're a big firm you cannot effort keeping live thousands of servers. This means you'll discover bugs that only presents under certain circumstances you cannot spot in other environments (it happens often to not be able to reproduce them).
By choosing to develop the whole stack yourself you agree with having to deal with maintenance and bug-discovery in your whole stack. So when you try to load a page that has 25 services interacting you know it may be failing because of a bug in: your API Gateway, your Security implementation, your token parser, your user account service, your business service A to N, your database service (if any), your database load balance (if any), your database instance.
I know it's tempting to do everything, but try to keep it flat and do what you need to do. By following this path you'll think about your product, which I think is what's the most important think to do now.
To complete my answer, about the scaling issues:
it doesn't matter. Whatever choice you pick it will scale seamlessly:
API Gateway should be able to work on a pool of backends (so from that server you should be able to redirect to N backend machines you can put live when you need to, you can even have some API to support automatic registration of new instances, or even simples put the IP of an Elastic Load Balancer or HAproxy or equivalents, and as you add backends to them it will just work -you have moved the multiple IPs issue from the API Gateway to one layer down).
If you handle authentication at services level (and you have an API Gateway) see #1
If you handle authentication at services level (without an API Gateway) then you need to look at some other level in your stack: load balancing (layer 3 or layer 7), or the DNS level, you can use several features of DNS to put different IPs to answer from, using even advanced features like Anycast if you need latency distribution.
I know this answer introduced a lot of other questions, but I really tried to answer your question. The fact is that you need to understand and evaluate a lot of things when planning a microservice architecture and I'd not write a SLOC without a very-written-plan printed on every wall of my office.
You'll often need to go mental focus and exit from a single service to review the global vision and check everything is going fine.
I don't want to scare you, I'm rather trying to make you think to succeed.
I just want you to make sure you correctly evaluated all of the possibilities before to decide to do everything from scratch.
P.S. Should you choose to act using an API gateway be sure to limit services to only accept requests through it. On the same machine just start listening on localhost, on multiple machines you'll need some advanced networking rule depending on your operating system.
Good Luck!
This post is intended to start a deeper discussion on Single Page Applications for the web. There are questions that do not seem to have a clear answer in most resources on the subject.
They are in my mind
Authorization and authentication.
With entire web app being on the client, it may make calls to the server in any of its functions, even those that the user does not have rights to. The fact that the user cannot see a menu, does not preclude that person from invoking java script functions. This is easily handled in MVC app, for example, by using controllers that validate user rights to a specific function based on a cookie for example. However, some SPA apps just use single controller with Breeze or Web Api, which make authorization server side impossible.
Memory management on the client
For small sample apps this is not an issue, but imagine an app with 100's of screens or an app with a single screen that pulls thousands of records over the course of one day. With persistent caching one could imagine large memory issues, especially on under-powered devices with little RAM, like phones or tablets. How can a group of developers had SPA route without a clear vision of handling memory management?
Three Tier deployment
Some IT departments will never allow applications with a connection string to a database located on front end web servers. Every SPA demo I have seen is structured exactly like that, including Breeze or Web Api for that matter.
Unobtrusive validation.
It would require developers to use MVC partial views and controllers instead of just HTML files, which seems to fly in the face of SPA concepts, while it provides a very robust way to easily incorporate validation and UI to support it into web applications.
Exposing primary integer based keys in the url.
This is non-no in OWASP.
As a result, SPA applications "seem" to target areas with few security requirements and small feature sets. What do you think?
Thanks.
#Sergey - I think this is just too broad a question for StackOverflow. S.O. isn't a discussion forum; it's a place to go for specific answers. So while your questions are potentially valid, I don't think you should hold out much hope for deep substantive responses here.
May I add, in the friendliest possible way, that your sweeping, unsupported, and negative statements make you look like a troll. You're not a troll are you Sergey?
On the chance that you are in fact authentically concerned, I offer a few quick reactions, particularly as they pertain to Breeze.
Authorization. In Web API you can authorize at the method level. The ApiController base class has a User property that returns the IPrincipal. So whether you have one controller or many (and you can have many in Breeze if you want), the granularity is method level, not just class level.
Memory management. Desktop developers have coped with this concern for years. It may cause you some astonishment if you've always developed traditional web apps where process lifetimes are brief. But long-running processes are not news to those of us who built large apps in desktop technologies such as WinForms, WPF, and Silverlight. The issues and solutions are much the same in the land of HTML and JavaScript.
Layers on the backend. You've been looking at demos too long. Yes most demos dump everything into one project running on one server. We assume you know how to refactor the server to meet scaling, performance and security requirements for your environment. Our demos are concerned mostly with front-end SPA development. We do dabble at the service boundary to show how data flow through a service API, through an ORM, through to the database. We thought it sufficient to identify these distinct layers and leave as an exercise for the reader the comparatively trivial matter of moving these layers to different tiers. We may have to re-visit that assumption someday. But does anyone seriously believe that there are significant obstacles to distributing layers/responsibilities across server-side tiers? Really? Like what?
Unobtrusive validation. When most people start using the word "unobtrusive" in connection with HTML, they are usually making a point about keeping JavaScript out the HTML. Perhaps that's what you mean too, in which case SPA developers everywhere agree ... and that's why there are numerous "unobtrusive validation" libraries available. HTML 5 validation, jQuery validation and Knockout validation come to mind. All of them are in the SPA developer's toolkit and none of them "require developers to use MVC partial views and controllers". What gives you the impression that a SPA would need any server-side resources of any kind to implement validation with JavaScript-free HTML markup?
Ids as security risk. Really? This is bogus. The key value is no more a security risk than any other data value. Millions of applications - not just SPAs - communicate key values to the client, both in the URL and in the body. It's standard in REST APIs. It's standard in ODATA. And you want to dismiss them all by saying that they "target areas with few security requirements and small feature sets"? Good luck with that. I think you'll have to do better than rest your case on a link to a relatively obscure organization's entire web site.
I have built some SPA applications, ranging from small to large (over 100 scripts and views). Only a handful of them had every view accessible to the public. The rest went through a strict access structure. It was so simple to return a 401 unauthorized from the server and the client just handling the 401 to redirect it to the login screen. Mr. Ward and Mr. Papa put it right. Get out of the Demo mode and try to find solutions to the issues you come across. I have watched John Papa's SPA on pluralsight, gone through numerous articles and applications on Breeze and I have to tell you, none of my applications use Breeze to do queries from the client side, because YOU DON'T NEED TO!!
Moreover, I have only extended what I have learnt and come up with my own way of solving problems. This is not an answer to your queries, but I only can provide a short comment. No technique is perfect and there is no ONE way to do everything. My server side is locked down where it needs to be locked down, my routes on the client side are locked down (if using durandal take a look at guardRoute), my scripts are minified and my images are sprited (if there is a word like that). All in all, SPA is a great technique, you got to find solutions to the quirks!
Here is my requirements:
Usable by any mobile application I'm developing
I'm developing the mobile application, therefore I can implement any securing strategies.
Cacheable using classical HTTP Cache strategy
I'm using Varnish with a very basic configuration and it works well
Not publicly available
I don't want people be able to consume my API
Solutions I think of:
Use HTTPS, but it doesn't cover the last requirements because proxying request from the application will show the API KEY used.
Is there any possibility to do this? Using something like a private/public key for example?
Which fits well with HTTP, Apache, and Varnish.
There is no way to ensure that the other end of a network link is your application. This is not a solvable problem. You can obfuscate things with certificates, keys, secrets, whatever. But all of these can be reverse-engineered by the end user because they have access to the application. It's ok to use a little obfuscation like certificates or the like, but it cannot be made secure. Your server must assume that anyone connecting to it is hostile, and behave accordingly.
It is possible to authenticate users, since they can have accounts. So you can certainly ensure that only valid users may use your service. But you cannot ensure that they only use your application. If your current architecture requires that, you must redesign. It is not solvable, and most certainly not solvable on common mobile platforms.
If you can integrate a piece of secure hardware, such as a smartcard, then it is possible to improve security in that you can be more certain that the human at the other end is actually a customer, but even that does not guarantee that your application is the one connecting to the server, only that the smartcard is available to the application that is connecting.
For more on this subject, see Secure https encryption for iPhone app to webpage.
Even though it's true there's basically no way to guarantee your API is only consumed by your clients unless you use a Hardware secure element to store the secret (which would imply you making your own phone from scratch, any external device could be used by any non official client App as well) there are some fairly effective things you can do to obscure the API. To begin with, use HTTPS, that's a given. But the key here, is to do certificate pinning in your app. Certificate pining is a technique in which you store the valid public key certificate for the HTTPS server you are trying to connect. Then on every connection, you validate that it's an HTTPS connection (don't accept downgrade attacks), and more importantly, validate that it's exactly the same certificate. This way you prevent a network device in your path to perform a man in the middle attack, thus ensuring no one is listening in in your conversation with the server. By doing this, and being a bit clever about the way you store the API's parameters general design in your application (see code obfuscation, particularly how to obfuscate string constants), you can be fairly sure you are the only one talking to your server. Of course, security is only a function of how badly does someone want to break in your stuff. Doing this doesn't prevent a experienced reverse-engineer with time to spare to try (and possibly succeed) to decompile your source code and find what it is looking for. But doing all of this will force it to look at the binary, which is a couple of orders of magnitude more difficult to do than just performing a man in the middle attack. This is famously related to the latest snap chat flurrry of leaked images. Third party clients for snapchat exist, and they were created by reverse engineering the API, by means of a sniffer looking at the traffic during a man in the middle attack. If the snapchat app developers would have been smarter, they would've pinned their certificate into their app, absolutely guaranteeing it's snapchat's server who they're talking to, and the hackers would need to inspect the binary, a much more laborious task that perhaps given the effort involved, would not have been performed.
We use HTTPS and assign authorized users a key which is sent in and validated with each request.
We also use HMAC hashing.
Good read on this HMAC:
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/
Just to be on the safe side, what's the best practice to ensure that only my application has access to my webservice, which is hosted on a public server? Should I implement I shared key or something?
My webservice is hosted on Googles App Engine and my Application runs on iPhones and iPads.
If you need further information, just ask.
Thanks,
Henrik
some sort of challenge/response authentication would be your best bet, but you could use something as simple as a key that's sent with every request. it might be quite easy for someone with a packet sniffer to reverse engineer that security though - i guess the amount of time you spend on it will relate to how much you really care :)
If you require your iphone app users to enter a loginid/password, then it is trivial to achieve what you want. But I assume you don't want that ..
Without that, there is no way to ensure you app has exclusive access to your web-services. People can always sniff HTTP traffic and spoof it. People can decompile/reverse-engineer your app to figure out the key/password.
See other discussions on StackOverflow - How to restrict access to my web service? and How can I create and use a web service in public but still restrict its use to only my app?
You could program your app to only serve requests that include your iPhone's unique identier - see StackOverflow question [Unique identifier for an iPhone app]. The id could still be sniffed, so depending on your needs, you may need methods to counter that.
Well, i had similar problem. What i realized, there is no 100% solution. What i did is, i used different approach. I have implemented OAuth and SSL, of course and than make algorithm for my web service to learn behavior of my app.
I try to put that algorithm in some kind of pattern, template, so it can be used in more scenarios. It's still in developing, so here is code of simple console app that will simulate that algorithm. Hope this can help:
https://github.com/vjeftovic/LearningRESTSimulation