Why is the following Haskell code hanging? - haskell

I'm new to Haskell. I was trying to solve the diophantine equation |x^y-y^x| is prime, using Haskell, for a given upper bound x, y < n.
So, I wrote this Haskell code:
-- list of primes
listprimesupto :: Integral a => a -> [a]
listprimesupto 1 = []
listprimesupto 2 = [2]
listprimesupto n = let halflstprimes = (listprimesupto (n `div` 2))
in halflstprimes++[i|i<-[((n `div` 2)+1)..n], (length [x|x<-halflstprimes, (i `mod` x) == 0])==0 ]
-- is prime?
is_prime :: Integral a => a -> Bool
is_prime 1 = False
is_prime n = let halflstprimes = (listprimesupto (n `div` 2))
in (length [x|x<-halflstprimes, (n `mod` x) == 0])==0
-- solve |x^y - y^x| == prime
xy_yx_p :: Integral t => t -> [(t, t)]
--xy_yx_p n = [(x,y)|x<-[2..n], y<-[2..n], x < y, (abs (x^y-y^x)) `elem` (listprimesupto (n^3))] -- version 1, works but upper limit too small
xy_yx_p n = [(x,y)|x<-[2..n], y<-[2..n], x < y, (let t=abs (x^y-y^x) in is_prime t)==True] -- version 2, hangs for n>3 ...
xy_yx_p n (version 2, uncommented) hangs for n > 3, in GHCi. Ctrl-C doesn't even work. I have to kill ghc from Activity Monitor (I'm on Mac).
Any idea what am I doing wrong in xy_yx_p? The other two functions seem to work fine.
Thanks in advance.

So, if it hangs for n = 4, what's so special about that case? Well, it's t. For x = 2 and y = 4, you will get
t = abs (2 ^ 4 - 4 ^ 2)
= abs (16 - 16 )
= abs 0
= 0
Therefore, you use 0 in is_prime, and thereby also in listprimesupto. This leads to a never ending recursion:
listprimesupto 0 = let halflstprimes = (listprimesupto (0 `div` 2))
in -- .....
So make sure that you handle non-positive inputs:
listprimesupto n | n <= 0 = []
is_prime n | n <= 1 = False

Related

How do I get the sums of digits of the negative large number in Haskell?

sumOfDigitsPosNeg x =
if x == 0 then 0
else if x < 0 then sumOfDigitsPosNeg ((-1)*x `div` 10) + mod ((-1)*x) 10
else sumOfDigitsPosNeg (x `div` 10) + mod x 10
I've tried with these code, but if the input is more than one digit, the output is wrong. I'm just confused how to convert the negative numbers into positive. How do I approach this problem?
Using abs this is quite easy. We just operate on the absolute value of the number input.
sumDigits :: Integral t => t -> t
sumDigits 0 = 0
sumDigits n = a `mod` 10 + sumDigits (a `div` 10)
where a = abs n
You can work with a helper go function that will only retrieve the absolute value. We thus call go with the abs :: Num a => a -> a of the item:
sumOfDigitsPosNeg :: Integral a => a -> a
sumOfDigitsPosNeg = go . abs
where go 0 = 0
go n = r + go q
where (q, r) = quotRem n 10

Goldbach function for list of even numbers [4..n]

Hello I am trying to make a function goldbach :: Integer -> Bool for interval [4..n] that should return True only if all elements in that interval is even and can be summed from two prim numbers. So far I have done this.
goldbach::Integer->Bool
goldbach n
|goldbach2 n == ??? = goldbach (n-2)
|n==4 = True
|otherwise = False
goldbach2 :: Integer -> (Integer, Integer)
goldbach2 a = head $
filter (\(x,y) -> isPrime x && isPrime y) $
map (\e -> (e, a - e)) [3,5..a `div` 2]
where
factors a = filter (isFactor a) [2..a-1]
isFactor a b = a `mod` b == 0
isPrime a = null $ factors a
Function golbach2 result looks like this goldbac2 28 = (5, 23). How should I chek in my 3rd line goldbach2 n == ??? = goldbach (n-2) if result of goldbach2 n is correct and gives me two prim numbers?
If I understand it correctly, you want something like:
| let (n1, n2) = goldbach2 n in n == n1 + n2 = goldbach (n-2)
I would write this like
goldbachInterval n = all goldbach [4,6 .. n]
where
goldbach k = .... -- property of being a golbach number

Haskell function that return the next prime number after given n

Learning Haskell. Trying to write a function called nextPrime n that will return the next prime number after n.
I have the following:
-- Generate a list of all factors of n
factors :: Integral a => a -> [a]
factors n = [x | x <- [1..n], n `mod` x == 0]
-- True iff n is prime
isPrime :: Integral a => a -> Bool
isPrime n = factors n == [1, n]
So far the function is set up like so:
nextPrime :: Integral a => a -> a
nextPrime n =
I presume I have to do a sort of while loop maybe but not sure how. I am totally new to functional programming. Any help is appreciated
I assumed that nextPrime n means "get me the first prime number that's greater than n".
Here's an idea:
nextPrime :: Integral a => a -> a
nextPrime n = nextPrime' (n + 1)
where nextPrime' m = ...
You want to fill in the blanks for nextPrime'. Here's a hint:
fun n = if n <= 0
then 0
else n + fun (n - 1)
This is a recursive function that calculates the sum 1 + 2 + 3 + ... + n, though it does it starting with n and going down from there. nextPrime' will have to go up.

Check whether an integer (or all elements of a list of integers) be prime

I'm doing a simple Haskell function using recursion. At the moment, this seems to work but, if I enter 2, it actually comes up as false, which is irritating. I don't think the code is as good as it could be, so, if you have any advice there, that'd be cool too!
I'm pretty new to this language!
EDIT: Ok, so I understand what a prime number is.
For example, I want to be able to check 2, 3, 5, 7, etc and have isPrime return true. And of course if I run the function using 1, 4, 6, 8 etc then it will return false.
So, my thinking is that in pseudo code I would need to do as follows:
num = 2 -> return true
num > 2 && num = even -> return false
After that, I'm struggling to write it down in any working code so the code below is my work in process, but I really suck with Haskell so I'm going nowhere at the minute.
module Recursion where
isPrime :: Int -> Bool
isPrime x = if x > 2 then ((x `mod` (x-1)) /= 0) && not (isPrime (x-1)) else False
Ok,
let's do this step by step:
In math a (natural) number n is prime if it has exactly 2 divisors: 1 and itself (mind 1 is not a prime).
So let's first get all of the divisors of a number:
divisors :: Integer -> [Integer]
divisors n = [ d | d <- [1..n], n `mod` d == 0 ]
then get the count of them:
divisorCount :: Integer -> Int
divisorCount = length . divisors
and voila we have the most naive implementation using just the definition:
isPrime :: Integer -> Bool
isPrime n = divisorCount n == 2
now of course there can be quite some impprovements:
instead check that there is no divisor > 1 and < n
you don't have to check all divisors up to n-1, it's enough to check to the squareroot of n
...
Ok just to give a bit more performant version and make #Jubobs happy ;) here is an alternative:
isPrime :: Integer -> Bool
isPrime n
| n <= 1 = False
| otherwise = not . any divides $ [2..sqrtN]
where divides d = n `mod` d == 0
sqrtN = floor . sqrt $ fromIntegral n
This one will check that there is no divisor between 2 and the squareroot of the number
complete code:
using quickcheck to make sure the two definitions are ok:
module Prime where
import Test.QuickCheck
divisors :: Integer -> [Integer]
divisors n = [ d | d <- [1..n], n `mod` d == 0 ]
divisorCount :: Integer -> Int
divisorCount = length . divisors
isPrime :: Integer -> Bool
isPrime n
| n <= 1 = False
| otherwise = not . any divides $ [2..sqrtN]
where divides d = n `mod` d == 0
sqrtN = floor . sqrt $ fromIntegral n
isPrime' :: Integer -> Bool
isPrime' n = divisorCount n == 2
main :: IO()
main = quickCheck (\n -> isPrime' n == isPrime n)
!!warning!!
I just saw (had something in the back of my mind), that the way I did sqrtN is not the best way to do it - sorry for that. I think for the examples with small numbers here it will be no problem, but maybe you really want to use something like this (right from the link):
(^!) :: Num a => a -> Int -> a
(^!) x n = x^n
squareRoot :: Integer -> Integer
squareRoot 0 = 0
squareRoot 1 = 1
squareRoot n =
let twopows = iterate (^!2) 2
(lowerRoot, lowerN) =
last $ takeWhile ((n>=) . snd) $ zip (1:twopows) twopows
newtonStep x = div (x + div n x) 2
iters = iterate newtonStep (squareRoot (div n lowerN) * lowerRoot)
isRoot r = r^!2 <= n && n < (r+1)^!2
in head $ dropWhile (not . isRoot) iters
but this seems a bit heavy for the question on hand so I just remark it here.
Here are two facts about prime numbers.
The first prime number is 2.
An integer larger than 2 is prime iff it's not divisible by any prime number up to its square root.
This knowledge should naturally lead you to something like the following approach:
-- primes : the infinite list of prime numbers
primes :: [Integer]
primes = 2 : filter isPrime [3,5..]
-- isPrime n : is positive integer 'n' a prime number?
isPrime :: Integer -> Bool
isPrime n
| n < 2 = False
| otherwise = all (\p -> n `mod` p /= 0) (primesPrefix n)
where primesPrefix n = takeWhile (\p -> p * p <= n) primes
As a bonus, here is a function to test whether all items of a list of integers be prime numbers.
-- arePrimes ns : are all integers in list 'ns' prime numbers?
arePrimes :: [Integer] -> Bool
arePrimes = all isPrime
Some examples in ghci:
ghci> isPrime 3
True
ghci> isPrime 99
False
ghci> arePrimes [2,3,7]
True
ghci> arePrimes [2,3,4,7]
False
You can get a recursive formulation from the "2 divisors" variant by step-wise refinement:
isPrime n
= 2 == length [ d | d <- [1..n], rem n d == 0 ]
= n > 1 && null [ d | d <- [2..n-1], rem n d == 0 ]
= n > 1 && and [ rem n d > 0 | d <- takeWhile ((<= n).(^2)) [2..] ]
= n > 1 && g 2
where
g d = d^2 > n || (rem n d > 0 && g (d+1))
= n == 2 || (n > 2 && rem n 2 > 0 && g 3)
where
g d = d^2 > n || (rem n d > 0 && g (d+2))
And that's your recursive function. Convince yourself of each step's validity.
Of course after we've checked the division by 2, there's no need to try dividing by 4,6,8, etc.; that's the reason for the last transformation, to check by odds only. But really we need to check the divisibility by primes only.

Haskell Refresh a variables value

I want to refresh a variable value, each time I make a recursion of a function. To make it simple I will give you an example.
Lets say we give to a function a number (n) and it will return the biggest mod it can have, with numbers smaller of itself.
{- Examples:
n=5 `mod` 5
n=5 `mod` 4
n=5 `mod` 3
n=5 `mod` 2
n=5 `mod` 1
-}
example :: Integer -> Integer
example n
| n `mod` ... > !The biggest `mod` it found so far! && ... > 0
= !Then the biggest `mod` so far will change its value.
| ... = 0 !The number we divide goes 0 then end! = 0
Where ... = recursion ( I think)
I don't know how I can describe it better. If you could help me it would be great. :)
You can write it as you described:
example :: Integer -> Integer
example n = biggestRemainder (abs n) 0
where
biggestRemainder 0 biggestRemainderSoFar = biggestRemainderSoFar
biggestRemainder divisor biggestRemainderSoFar = biggestRemainder (divisor - 1) newBiggestRemainder
where
thisRemainder = n `mod` divisor
newBiggestRemainder = case thisRemainder > biggestRemainderSoFar of
True -> thisRemainder
False -> biggestRemainderSoFar
This function can also be written more easily as
example2 :: Integer -> Integer
example2 0 = 0
example2 n = maximum $ map (n `mod`) [1..(abs n)]

Resources