thread exit but still hold mutex - linux

A thread which hold mutex died. Another thread will deadlock when it calls "pthread_mutex_lock", although I use "PTHREAD_MUTEX_ERRORCHECK" attribute.
#include <pthread.h>
#include <iostream>
#include <unistd.h>
using namespace std;
pthread_mutex_t mutex;
void *handler(void *)
{
cout << "child thread" << endl;
int ret = pthread_mutex_lock(&mutex);
cout << "child ret: " << ret << endl;
pthread_exit(NULL);
}
int main()
{
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
pthread_mutex_init(&mutex, &attr);
pthread_mutexattr_destroy(&attr);
pthread_t tid;
pthread_create(&tid, NULL, handler, NULL);
sleep(2);
cout << "father awake" << endl;
int ret = pthread_mutex_lock(&mutex);
cout << "father ret: " << ret << endl;
return 0;
}
Output:
[LINUX ENVIRONMENT]: Linux ubuntu 3.19.0-25-generic #26~14.04.1-Ubuntu SMP

You are perhaps thinking of the robust attribute of mutexes (pthread_mutexattr_setrobust()), rather than of the errorcheck type of mutex. A robust mutex would have notified your main thread that the holder of the mutex's lock had terminated with EOWNERDEAD.
The PTHREAD_MUTEX_ERRORCHECK type, on the other hand, simply guards against three kinds of errors:
attempting to recursively lock one's own locked mutex (not applicable here)
attempting to unlock a mutex locked by another thread (not applicable here)
attempting to unlock an unlocked mutex (not applicable here)

This is a small example of using the pthread_mutexattr_setrobust call to allow for setting the mutex that was never unlocked back to a consistent state:
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
pthread_mutex_t lock;
void dropped_thread(void)
{
printf("Setting lock...\n");
pthread_mutex_lock(&lock);
printf("Lock set, now exiting without unlocking...\n");
pthread_exit(NULL);
}
int main(int argc, char *argv[])
{
pthread_t lock_getter;
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST);
pthread_mutex_init(&lock, &attr);
pthread_mutexattr_destroy(&attr);
pthread_create(&lock_getter, NULL, (void *) dropped_thread, NULL);
sleep(2);
printf("Inside main\n");
printf("Attempting to acquire unlocked mutex?\n");
pthread_mutex_consistent(&lock);
pthread_mutex_unlock(&lock);
pthread_mutex_lock(&lock);
printf("Successfully acquired lock!\n");
pthread_mutex_destroy(&lock);
return 0;
}
As you can see by making the call to pthread_mutex_consistent after setting the mutex robustness, its state is marked as consistent again.

Related

Why sleep() in a thread cannot be interrupted by signal in my code?

#include <iostream>
#include <thread>
#include <signal.h>
#include <unistd.h>
void handler(int sig){
std::cout << "handler" << std::endl;
}
void func() {
sleep(100);
perror("sleep err:");
}
int main(void) {
signal(SIGINT, handler);
std::thread t(func);
pthread_kill(t.native_handle(), SIGINT);
perror("kill err:");
t.join();
return 0;
}
If I put sleep() inside main function, and send a signal by pressing ctrl+c, sleep will be interrupted and return immediately with perror() saying it's interrupted.
But with the code above, the "handler" in handler function will be printed, but sleep will not return and the program keeps running. The output of this program is:
kill err:: Success
handler
And if I replace sleep() with recvfrom(), recvfrom() will not be interrupted even it's inside the main thread.
#include <vector>
#include <string.h>
#include <netinet/in.h>
#include <errno.h>
#include <unistd.h>
void SigHandler(int sig){
std::cout << "handler" << std::endl;
}
int main(void) {
signal(SIGINT, SigHandler);
int bind_fd_;
if ((bind_fd_ = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
std::cout << "socket creation failed " << strerror(errno) << std::endl;
}
struct sockaddr_in servaddr;
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
servaddr.sin_port = htons(12345);
if (bind(bind_fd_, reinterpret_cast<const struct sockaddr *>(&servaddr),
sizeof(servaddr)) < 0) {
std::cout << "socket bind failed " << strerror(errno) << std::endl;
}
struct sockaddr_in cliaddr;
socklen_t cliaddr_len = sizeof(cliaddr);
std::vector<char> buffer(10*1024*1024,0);
std::cout << "Wait for new request"<< std::endl;
int n = 0;
while (n == 0) {
std::cout << "before recvfrom" << std::endl;
n = recvfrom(bind_fd_, buffer.data(), buffer.size(), 0,
reinterpret_cast<struct sockaddr *>(&cliaddr), &cliaddr_len);
// sleep(100);
perror("recvfrom err: ");
std::cout << "recv " << n << " bytes from " << cliaddr.sin_port<< std::endl;
}
}
I don't know what is wrong with my code, hoping your help, thanks
At the time you direct the signal to the thread, that thread has not yet proceeded far enough to block in sleep(). Chances are that it has not even been scheduled for the first time. Change the code to something like
std::thread t(func);
sleep(5); // give t enough time to arrive in sleep()
pthread_kill(t.native_handle(), SIGINT);
and you'll see what you expect.
Note that using signals in a multithreaded program is not usually a good idea because certain aspects are undefined/not-so-clearly defined.
Note also that it is not correct to use iostreams inside a signal handler. Signal handlers run in a context where pretty much nothing is safe to do, much like an interrupt service routine on bare metal. See here for a thorough explanation of that matter.

Interruptible sleep in std::thread

I have a simple C++11 thread program like below.
Code:
#include <iostream>
#include <thread>
#include <chrono>
#include <atomic>
int main(int argc, char *argv[]) {
std::cout << "My program starts" << std::endl;
std::atomic<bool> exit_thread(false);
std::thread my_thread = std::thread([&exit_thread]{
do {
std::cout << "Thread is doing something..." << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(5));
} while (!exit_thread);
});
std::this_thread::sleep_for(std::chrono::seconds(12));
exit_thread = true;
std::cout << "Might have to wait to exit thread" << std::endl;
my_thread.join();
return 0;
}
As you can see above, there is a loop which has a sleep_for which makes the thread sleep for 5 seconds and then it wakes and loops again provided that exit_thread is set to false. Main thread waits for 12 seconds and prepares to exit firstly by setting exit_thread to true and then does a join on the thread. All good until now.
Problem:
Above is okay and works for objective. But there is a "potential problem". If the thread has just now started to sleep then it would take it 4 seconds more before it gets out of sleep to discover that it now needs to exit. This delays the exit process and destruction.
Question:
How to can I make the thread sleep in an interruptible way? So that I can interrupt the sleep and make the thread exit right away instead by cancelling out of sleep instead of waiting for the potential 4 or 3 or 2 seconds.
I think that the solution to this might be achievable using a std::condition_variable? Probably? I am looking for a piece of code to show how.
Note that my code runs on both clang and gcc.
We should be waiting on a condition variable or semaphore instead of sleeping. Here's the minimal change to do that:
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread>
int main()
{
std::cout << "My program starts" << std::endl;
std::atomic<bool> exit_thread(false);
std::condition_variable cv;
std::mutex m;
std::thread my_thread = std::thread([&exit_thread,&cv,&m]{
do {
std::cout << "Thread is doing something..." << std::endl;
{
std::unique_lock<std::mutex> lock(m);
cv.wait_for(lock, std::chrono::seconds(5));
}
} while (!exit_thread);
});
std::this_thread::sleep_for(std::chrono::seconds(12));
{
std::lock_guard<std::mutex> guard(m);
exit_thread = true;
}
cv.notify_all();
std::cout << "Thread stops immediately" << std::endl;
my_thread.join();
}
Apparently, we do need the mutex:
Even if the shared variable is atomic, it must be modified under the
mutex in order to correctly publish the modification to the waiting
thread.

Using CLOCK_MONOTONIC type in the 'condition variable' wait_for() notify() mechanism

I am using code that runs on ARM (not Intel processor). Running c++11 code example (CODE A) from: http://www.cplusplus.com/reference/condition_variable/condition_variable/wait_for/ to test the wait_for() mechanism. This is not working right - looks like the wait_for() does not wait. In Intel works fine. After some research and using pthread library directly and setting MONOTONIC_CLOCK definition, solves the issue (CODE B).
(Running on ARM is not the issue)
My problem is :
How can I force the C++11 API wait_for() to work with MONOTONIC_CLOCK?
Actually I would like to stay with 'CODE A' but with the support or setting of MONOTONIC_CLOCK.
Thanks
CODE A
// condition_variable::wait_for example
#include <iostream> // std::cout
#include <thread> // std::thread
#include <chrono> // std::chrono::seconds
#include <mutex> // std::mutex, std::unique_lock
#include <condition_variable> // std::condition_variable, std::cv_status
std::condition_variable cv;
int value;
void read_value() {
std::cin >> value;
cv.notify_one();
}
int main ()
{
std::cout << "Please, enter an integer (I'll be printing dots): \n";
std::thread th (read_value);
std::mutex mtx;
std::unique_lock<std::mutex> lck(mtx);
while
(cv.wait_for(lck,std::chrono::seconds(1))==std::cv_status::timeout)
{
std::cout << '.' << std::endl;
}
std::cout << "You entered: " << value << '\n';
th.join();
return 0;
}
CODE B
#include <sys/time.h>
#include <unistd.h>
#include <iostream> // std::cout
#include <thread> // std::thread
#include <chrono> // std::chrono::seconds
#include <mutex> // std::mutex, std::unique_lock
#include <condition_variable> // std::condition_variable, std::cv_status
const size_t NUMTHREADS = 1;
pthread_mutex_t mutex;
pthread_cond_t cond;
int value;
bool done = false;
void* read_value( void* id )
{
const int myid = (long)id; // force the pointer to be a 64bit integer
std::cin >> value;
done = true;
printf( "[thread %d] done is now %d. Signalling cond.\n", myid, done
);
pthread_cond_signal( &cond );
}
int main ()
{
struct timeval now;
pthread_mutexattr_t Attr;
pthread_mutexattr_init(&Attr);
pthread_mutexattr_settype(&Attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&mutex, &Attr);
pthread_condattr_t CaAttr;
pthread_condattr_init(&CaAttr);
pthread_condattr_setclock(&CaAttr, CLOCK_MONOTONIC);
pthread_cond_init(&cond, &CaAttr);
std::cout << "Please, enter an integer:\n";
pthread_t threads[NUMTHREADS];
int t = 0;
pthread_create( &threads[t], NULL, read_value, (void*)(long)t );
struct timespec ts;
pthread_mutex_lock( &mutex );
int rt = 0;
while( !done )
{
clock_gettime(CLOCK_MONOTONIC, &ts);
ts.tv_sec += 1;
rt = pthread_cond_timedwait( & cond, & mutex, &ts );
std::cout << "..." << std::endl;
}
pthread_mutex_unlock( & mutex );
std::cout << "You entered: " << value << '\n';
return 0;
}
The documentation for std::condition_variable::wait_for says:
A steady clock is used to measure the duration.
std::chrono::steady_clock:
Class std::chrono::steady_clock represents a monotonic clock. The time points of this clock cannot decrease as physical time moves forward.
Unfortunately, this is gcc Bug 41861 (DR887) - (DR 887)(C++0x) does not use monotonic_clock that it uses system_clock instead of steady_clock for condition variables.
One solution is to use wait_until (be sure to read Notes section) function that allows to specify durations relative to a specific clock. E.g.:
cv.wait_until(lck, std::chrono::steady_clock::now() + std::chrono::seconds(1))

How would I stop a std::thread in a controlled manner

I have a program where I start multiple, long running threads (such as a REST-API). On primed signals (e.g SIGHUP) I would like to be able to shut down all threads cleanly (by waiting for them to exit). Below follows some code from a thispointer article that illustrated a good idea on how to do this
#include <thread>
#include <iostream>
#include <assert.h>
#include <chrono>
#include <future>
void threadFunction(std::future<void> futureObj)
{
std::cout << "Thread Start" << std::endl;
while (futureObj.wait_for(std::chrono::milliseconds(1)) ==
std::future_status::timeout)
{
std::cout << "Doing Some Work" << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
}
std::cout << "Thread End" << std::endl;
}
int main()
{
// Create a std::promise object
std::promise<void> exitSignal;
//Fetch std::future object associated with promise
std::future<void> futureObj = exitSignal.get_future();
// Starting Thread & move the future object in lambda function by reference
std::thread th(&threadFunction, std::move(futureObj));
//Wait for 10 sec
std::this_thread::sleep_for(std::chrono::seconds(10));
std::cout << "Asking Thread to Stop" << std::endl;
//Set the value in promise
exitSignal.set_value();
//Wait for thread to join
th.join();
std::cout << "Exiting Main Function" << std::endl;
return 0;
}
However, as one might have noticed this concept has a critical drawback: the exitSignal will have to be emitted before th.join() is called.
In a situation where one wants to listen to a signal, e.g using signal(SIGHUP, callback) this is of course impractical.
My question is: are there better concepts for shutting down multiple threads? How would I go about them? I think using a promise is not a bad idea, I just haven't found a way with it to solve my problem.
You can use std::notify_all_at_thread_exit() on a std::condition_variable.
Here is an example:
#include <mutex>
#include <thread>
#include <condition_variable>
#include <cassert>
#include <string>
std::mutex m;
std::condition_variable cv;
bool ready = false;
std::string result; // some arbitrary type
void thread_func()
{
thread_local std::string thread_local_data = "42";
std::unique_lock<std::mutex> lk(m);
// assign a value to result using thread_local data
result = thread_local_data;
ready = true;
std::notify_all_at_thread_exit(cv, std::move(lk));
} // 1. destroy thread_locals;
// 2. unlock mutex;
// 3. notify cv.
int main()
{
std::thread t(thread_func);
t.detach();
// do other work
// ...
// wait for the detached thread
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, [] { return ready; });
// result is ready and thread_local destructors have finished, no UB
assert(result == "42");
}
Source: cppreference.com

pthread_exit in signal handler causes segmentation fault

The program below sets SIG_ALRM handler for the whole process, creates a thread, sends SIG_ALRM signal to new created thread.
In SIG_ALRM handler pthread_exit is called.
The result - segmentation fault.
If you sleep before sending signal - OK.
It looks like new thread has not been started at the moment of pthread_exit.
I tried to locate segmentation fault with gdb but couldn't reproduce the crash with gdb.
What causes segmentation fault?
Thanks!
#include <signal.h>
#include <pthread.h>
#include <iostream>
#include <cassert>
using namespace std;
void* threadFunc(void* arg) {
cout << "thread: started. sleeping..: " << pthread_self() << endl;
sleep(10);
cout << "thread: exit" << endl;
return NULL;
}
void alrm_handler(int signo) {
cout << "alrm_handler: " << pthread_self() << endl;
pthread_exit(NULL); //if comment - no segmentation fault
}
int main() {
cout << "main: " << pthread_self() << endl;
struct sigaction act;
act.sa_handler = alrm_handler;
act.sa_flags = 0;
sigemptyset(&act.sa_mask);
sigaction(SIGALRM, &act, NULL);
pthread_t t;
int rc = pthread_create(&t, NULL, threadFunc, NULL);
assert(rc == 0);
// usleep(1000); //if Uncomment - no segmentation fault
rc = pthread_kill(t, SIGALRM);
assert(rc == 0);
pthread_join(t, NULL);
cout << "main: exit" << endl;
return 0;
}
The output:
main: 140130531731232
alrm_handler: 140130504095488
Segmentation fault
pthread_exit is not async-signal-safe. You cannot call it from signal handlers unless you can be sure the signal handler is not interrupting an async-signal-unsafe function. In particular, the time between calling pthread_create and the entry to your new thread's start function must be considered async-signal-unsafe - this is never explicitly spelled out in the standard, but you can think of the new thread as still being "in pthread_create" (which is async-signal-unsafe) if you like.
Give change for thread initialization process to be completed. so just uncomment the below line is the right approach.
usleep(1000);

Resources