Need help applying scikit-learn to this unbalanced text categorization task - scikit-learn

I have a multi-class text classification/categorization problem. I have a set of ground truth data with K different mutually exclusive classes. This is an unbalanced problem in two respects. First, some classes are a lot more frequent than others. Second, some classes are of more interest to us than others (those generally positively correlate with their relative frequency, although there are some classes of interest that are fairly rare).
My goal is to develop a single classifier or a collection of them to be able to classify the k << K classes of interest with high precision (at least 80%) while maintaining reasonable recall (what's "reasonable" is a bit vague).
Features that I use are mostly typical unigram-/bigram-based ones plus some binary features coming from metadata of the incoming documents that are being classified (e.g. whether them were submitted via email or though a webform).
Because of the unbalanced data, I am leaning toward developing binary classifiers for each of the important classes, instead of a single one like a multi-class SVM.
What ML learning algorithms (binary or not) implemented in scikit-learn allow for training tuned to precision (versus for example recall or F1) and what options do I need to set for that?
What data analysis tools in scikit-learn can be used for feature selection to narrow down the features that might be the most relevant to the precision-oriented classification of a particular class?
This is not really a "big data" problem: K is about 100, k is about 15, the total number of samples available to me for training and testing is about 100,000.
Thx

Given that k is small, I would just do this manually. For each desired class, train your individual (one vs the rest) classifier, take look at the precision-recall curve, and then choose the threshold that gives the desired precision.

Related

Word2Vec clustering: embed with low dimensionality or with high dimensionality and then reduce?

I am using K-means for topic modelling using Word2Vec and would like to understand the implications of vectorizing up to, let's say, 10 dimensions, against embedding it with 200 dimensions and then using PCA to get down to 10. Does the second approach make sense at all?
Which one worked better for your specific purposes, & your specific data, after trying both & comparing the end-results against each other, either in some ad-hoc ("eyeballing") or rigorous way?
There's no reason to prematurely reject any approach, given how many details about your data & ultimate end-goals are unstated.
It would be atypical to train a word2vec model to have only 10 dimensions. Published work most often shows the use of 100 to 1000 dimensions, often 300 or 400, assuming you've got enough bulk training data to make the algorithm worthwhile.
(Word2vec needs a lot of varied training text, with many contrasting usage examples for every word of interest, to generate good results. You may occasionally see toy-sized demos, on smaller amounts of data, just to quickly show steps, or some major qualities of the results. But good results, in the aspects for which word2vec is most appreciated, depend on plentiful training data.)
Also, whether or not your aims would be helped by the extra step of PCA to reduce the dimensionality of a larger word2vec model seems another separable question, to be determined experimentally by comparing results with and without that step, on your actual data/problem, rather than guessed at from intuitions from other projects that might not be comparable.

Why does more features in a random forest decrease accuracy dramatically?

I am using sklearn's random forests module to predict values based on 50 different dimensions. When I increase the number of dimensions to 150, the accuracy of the model decreases dramatically. I would expect more data to only make the model more accurate, but more features tend to make the model less accurate.
I suspect that splitting might only be done across one dimension which means that features which are actually more important get less attention when building trees. Could this be the reason?
Yes, the additional features you have added might not have good predictive power and as random forest takes random subset of features to build individual trees, the original 50 features might have got missed out. To test this hypothesis, you can plot variable importance using sklearn.
Your model is overfitting the data.
From Wikipedia:
An overfitted model is a statistical model that contains more parameters than can be justified by the data.
https://qph.fs.quoracdn.net/main-qimg-412c8556aacf7e25b86bba63e9e67ac6-c
There are plenty of illustrations of overfitting, but for instance, this 2d plot represents the different functions that would have been learned for a binary classification task. Because the function on the right has too many parameters, it learns wrongs data patterns that don't generalize properly.

Using SVM to perform classification on multi-dimensional time series datasets

I would like to use scikit-learn's svm.SVC() estimator to perform classification tasks on multi-dimensional time series - that is, on time series where the points in the series take values in R^d, where d > 1.
The issue with doing this is that svm.SVC() will only take ndarray objects of dimension at most 2, whereas the dimension of such a dataset would be 3. Specifically, the shape of a given dataset would be (n_samples, n_features, d).
Is there a workaround available? One simple solution would just be to reshape the dataset so that it is 2-dimensional, however I imagine this would lead to the classifier not learning from the dataset properly.
Without any further knowledge about the data reshaping is the best you can do. Feature engineering is a very manual art that depends heavily on domain knowledge.
As a rule of thumb: if you don't really know anything about the data throw in the raw data and see if it works. If you have an idea what properties of the data may be beneficial for classification, try to work it in a feature.
Say we want to classify swiping patterns on a touch screen. This closely resembles your data: We acquired many time series of such patterns by recording the 2D position every few milliseconds.
In the raw data, each time series is characterized by n_timepoints * 2 features. We can use that directly for classification. If we have additional knowledge we can use that to create additional/alternative features.
Let's assume we want to distinguish between zig-zag and wavy patterns. In that case smoothness (however that is defined) may be a very informative feature that we can add as a further column to the raw data.
On the other hand, if we want to distinguish between slow and fast patterns, the instantaneous velocity may be a good feature. However, the velocity can be computed as a simple difference along the time axis. Even linear classifiers can model this easily so it may turn out that such features, although good in principle, do not improve classification of raw data.
If you have lots and lots and lots and lots of data (say an internet full of good examples) Deep Learning neural networks can automatically learn features to some extent, but let's say this is rather advanced. In the end, most practical applications come down to try and error. See what features you can come up with and try them out in practice. And beware the overfitting gremlin.

Similarity score for mixed (binary & numerical) vectors

I have a dataset which the instances are of about 200 features, about 11 of these features are numerical (integer) and the rest are binary (1/0) , these features may be correlated and they are of different probability distributions ,
It's been a while that I've been for a good similarity score which works for a mixed vector and takes into account the correlation between the features,
Do you know such similarity score?
Thanks,
Arian
In your case, the similarity function relies heavily on the input data patterns. You might benefit from learning a distance metric for the input space of data from a given collection
of pair of similar/dissimilar points that preserves the distance relation among the
training data.
Here is a nice survey paper.
The numerous types of distance measures, Euclidean, Manhattan, etc are going provide different levels of accuracy depending on the dataset. Best to read papers covering your method of data fitting and see what heuristics they use. Not to mention that some methods require only homogeneous data that scale accordingly. Here is a paper that talks about a whole host of measures that you might find attractive.
And as always, test and cross validate to see if there really is an impact from the mixing of feature types.

Training set - proportion of pos / neg / neutral sentences

I am hand tagging twitter messages as Positive, Negative, Neutral. I am try to appreciate is there some logic one can use to identify of the training set what proportion of message should be positive / negative and neutral ?
So for e.g. if I am training a Naive Bayes classifier with 1000 twitter messages should the proportion of pos : neg : neutral be 33 % : 33% : 33% or should it be 25 % : 25 % : 50 %
Logically in my head it seems that I i train (i.e. give more samples for neutral) that the system would be better at identifying neutral sentences then whether they are positive or negative - is that true ? or I am missing some theory here ?
Thanks
Rahul
The problem you're referring to is known as the imbalance problem. Many machine learning algorithms perform badly when confronted with imbalanced training data, i.e. when the instances of one class heavily outnumber those of the other class. Read this article to get a good overview of the problem and how to approach it. For techniques like naive bayes or decision trees it is always a good idea to balance your data somehow, e.g. by random oversampling (explained in the references paper). I disagree with mjv's suggestion to have a training set match the proportions in the real world. This may be appropriate in some cases but I'm quite confident it's not in your setting. For a classification problem like the one you describe, the more the sizes of the class sets differ, the more most ML algorithms will have problems discriminating the classes properly. However, you can always use the information about which class is the largest in reality by taking it as a fallback such that when the classifier's confidence for a particular instance is low or this instance couldn't be classified at all, you would assign it the largest class.
One further remark: finding the positivity/negativity/neutrality in Twitter messages seems to me to be a question of degree. As such, it may be viewes as a regression rather than a classification problem, i.e. instead of a three class scheme you perhaps may want calculate a score which tells you how positive/negative the message is.
There are many other factors... but an important one (in determining a suitable ratio and volume of training data) is the expected distribution of each message category (Positive, Neutral, Negative) in the real world. Effectively, a good baseline for the training set (and the control set) is
[qualitatively] as representative as possible of the whole "population"
[quantitatively] big enough that measurements made from such sets is statistically significant.
The effect of the [relative] abundance of a certain category of messages in the training set is hard to determine; it is in any case a lesser factor -or rather one that is highly sensitive to- other factors. Improvements in the accuracy of the classifier, as a whole, or with regards to a particular category, is typically tied more to the specific implementation of the classifier (eg. is it Bayesian, what are the tokens, are noise token eliminated, is proximity a factor, are we using bi-grams etc...) than to purely quantitative characteristics of the training set.
While the above is generally factual but moderately helpful for the selection of the training set's size and composition, there are ways of determining, post facto, when an adequate size and composition of training data has been supplied.
One way to achieve this is to introduce a control set, i.e. one manually labeled but that is not part of the training set and to measure for different test runs with various subsets of the training set, the recall and precision obtained for each category (or some similar accuracy measurements), for this the classification of the control set. When these measurements do not improve or degrade, beyond what's statistically representative, the size and composition of the training [sub-]set is probably the right one (unless it is an over-fitting set :-(, but that's another issue altogether... )
This approach, implies that one uses a training set that could be 3 to 5 times the size of the training subset effectively needed, so that one can build, randomly (within each category), many different subsets for the various tests.

Resources