Similarity score for mixed (binary & numerical) vectors - statistics

I have a dataset which the instances are of about 200 features, about 11 of these features are numerical (integer) and the rest are binary (1/0) , these features may be correlated and they are of different probability distributions ,
It's been a while that I've been for a good similarity score which works for a mixed vector and takes into account the correlation between the features,
Do you know such similarity score?
Thanks,
Arian

In your case, the similarity function relies heavily on the input data patterns. You might benefit from learning a distance metric for the input space of data from a given collection
of pair of similar/dissimilar points that preserves the distance relation among the
training data.
Here is a nice survey paper.

The numerous types of distance measures, Euclidean, Manhattan, etc are going provide different levels of accuracy depending on the dataset. Best to read papers covering your method of data fitting and see what heuristics they use. Not to mention that some methods require only homogeneous data that scale accordingly. Here is a paper that talks about a whole host of measures that you might find attractive.
And as always, test and cross validate to see if there really is an impact from the mixing of feature types.

Related

Confusion matrix for LDA

I’m trying to check the performance of my LDA model using a confusion matrix but I have no clue what to do. I’m hoping someone can maybe just point my in the right direction.
So I ran an LDA model on a corpus filled with short documents. I then calculated the average vector of each document and then proceeded with calculating cosine similarities.
How would I now get a confusion matrix? Please note that I am very new to the world of NLP. If there is some other/better way of checking the performance of this model please let me know.
What is your model supposed to be doing? And how is it testable?
In your question you haven't described your testable assessment of the model the results of which would be represented in a confusion matrix.
A confusion matrix helps you represent and explore the different types of "accuracy" of a predictive system such as a classifier. It requires your system to make a choice (e.g. yes/no, or multi-label classifier) and you must use known test data to be able to score it against how the system should have chosen. Then you count these results in the matrix as one of the combination of possibilities, e.g. for binary choices there's two wrong and two correct.
For example, if your cosine similarities are trying to predict if a document is in the same "category" as another, and you do know the real answers, then you can score them all as to whether they were predicted correctly or wrongly.
The four possibilities for a binary choice are:
Positive prediction vs. positive actual = True Positive (correct)
Negative prediction vs. negative actual = True Negative (correct)
Positive prediction vs. negative actual = False Positive (wrong)
Negative prediction vs. positive actual = False Negative (wrong)
It's more complicated in a multi-label system as there are more combinations, but the correct/wrong outcome is similar.
About "accuracy".
There are many kinds of ways to measure how well the system performs, so it's worth reading up on this before choosing the way to score the system. The term "accuracy" means something specific in this field, and is sometimes confused with the general usage of the word.
How you would use a confusion matrix.
The confusion matrix sums (of total TP, FP, TN, FN) can fed into some simple equations which give you, these performance ratings (which are referred to by different names in different fields):
sensitivity, d' (dee-prime), recall, hit rate, or true positive rate (TPR)
specificity, selectivity or true negative rate (TNR)
precision or positive predictive value (PPV)
negative predictive value (NPV)
miss rate or false negative rate (FNR)
fall-out or false positive rate (FPR)
false discovery rate (FDR)
false omission rate (FOR)
Accuracy
F Score
So you can see that Accuracy is a specific thing, but it may not be what you think of when you say "accuracy"! The last two are more complex combinations of measure. The F Score is perhaps the most robust of these, as it's tuneable to represent your requirements by combining a mix of other metrics.
I found this wikipedia article most useful and helped understand why sometimes is best to choose one metric over the other for your application (e.g. whether missing trues is worse than missing falses). There are a group of linked articles on the same topic, from different perspectives e.g. this one about search.
This is a simpler reference I found myself returning to: http://www2.cs.uregina.ca/~dbd/cs831/notes/confusion_matrix/confusion_matrix.html
This is about sensitivity, more from a science statistical view with links to ROC charts which are related to confusion matrices, and also useful for visualising and assessing performance: https://en.wikipedia.org/wiki/Sensitivity_index
This article is more specific to using these in machine learning, and goes into more detail: https://www.cs.cornell.edu/courses/cs578/2003fa/performance_measures.pdf
So in summary confusion matrices are one of many tools to assess the performance of a system, but you need to define the right measure first.
Real world example
I worked through this process recently in a project I worked on where the point was to find all of few relevant documents from a large set (using cosine distances like yours). This was like a recommendation engine driven by manual labelling rather than an initial search query.
I drew up a list of goals with a stakeholder in their own terms from the project domain perspective, then tried to translate or map these goals into performance metrics and statistical terms. You can see it's not just a simple choice! The hugely imbalanced nature of our data set skewed the choice of metric as some assume balanced data or else they will give you misleading results.
Hopefully this example will help you move forward.

Need help applying scikit-learn to this unbalanced text categorization task

I have a multi-class text classification/categorization problem. I have a set of ground truth data with K different mutually exclusive classes. This is an unbalanced problem in two respects. First, some classes are a lot more frequent than others. Second, some classes are of more interest to us than others (those generally positively correlate with their relative frequency, although there are some classes of interest that are fairly rare).
My goal is to develop a single classifier or a collection of them to be able to classify the k << K classes of interest with high precision (at least 80%) while maintaining reasonable recall (what's "reasonable" is a bit vague).
Features that I use are mostly typical unigram-/bigram-based ones plus some binary features coming from metadata of the incoming documents that are being classified (e.g. whether them were submitted via email or though a webform).
Because of the unbalanced data, I am leaning toward developing binary classifiers for each of the important classes, instead of a single one like a multi-class SVM.
What ML learning algorithms (binary or not) implemented in scikit-learn allow for training tuned to precision (versus for example recall or F1) and what options do I need to set for that?
What data analysis tools in scikit-learn can be used for feature selection to narrow down the features that might be the most relevant to the precision-oriented classification of a particular class?
This is not really a "big data" problem: K is about 100, k is about 15, the total number of samples available to me for training and testing is about 100,000.
Thx
Given that k is small, I would just do this manually. For each desired class, train your individual (one vs the rest) classifier, take look at the precision-recall curve, and then choose the threshold that gives the desired precision.

How to merge two classifiers in appropriate way if they are used on incosistent data

My data set consist of two disjoint subsets. There are two different classifiers with confidence measure, each can work only on one definite subset. I need to enhance accuracy of my system on the whole data, so I need to "combine" confidences of these classifiers. The point is that scales of classifiers can be sharply different, e.g. at one confidence level error and accept can be much different. Maybe there is a way to transform confidences to some uniform scale for both classifiers?
Accuracy means maximization of accept level subject to fixed error rate (for example, 10% of data set)
what about to make 3rd classifier which would make use of your 2 classifiers(input) and its output should be what you expect
How about combining classifiers through boosting. The paper titled "Boosting Localized Classifiers in Heterogeneous Databases" paper gives more detail.

Incrementally Trainable Entity Recognition Classifier

I'm doing some semantic-web/nlp research, and I have a set of sparse records, containing a mix of numeric and non-numeric data, representing entities labeled with various features extracted from simple English sentences.
e.g.
uid|features
87w39423|speaker=432, session=43242, sentence=34, obj_called=bob,favorite_color_is=blue
4535k3l535|speaker=512, session=2384, sentence=7, obj_called=tree,isa=plant,located_on=wilson_street
23432424|speaker=997, session=8945305, sentence=32, obj_called=salty,isa=cat,eats=mice
09834502|speaker=876, session=43242, sentence=56, obj_called=the monkey,ate=the banana
928374923|speaker=876, session=43242, sentence=57, obj_called=it,was=delicious
294234234|speaker=876, session=43243, sentence=58, obj_called=the monkey,ate=the banana
sd09f8098|speaker=876, session=43243, sentence=59, obj_called=it,was=hungry
...
A single entity may appear more than once (but with a different UID each time), and may have overlapping features with its other occurrences. A second data set represents which of the above UIDs are definitely the same.
e.g.
uid|sameas
87w39423|234k2j,234l24jlsd,dsdf9887s
4535k3l535|09d8fgdg0d9,l2jk34kl,sd9f08sf
23432424|io43po5,2l3jk42,sdf90s8df
09834502|294234234,sd09f8098
...
What algorithm(s) would I use to incrementally train a classifier that could take a set of features, and instantly recommend the N most similar UIDs and probability of whether or not those UIDs actually represent the same entity? Optionally, I'd also like to get a recommendation of missing features to populate and then re-classify to get a more certain matches.
I researched traditional approximate nearest neighbor algorithms. such as FLANN and ANN, and I don't think these would be appropriate since they're not trainable (in a supervised learning sense) nor are they typically designed for sparse non-numeric input.
As a very naive first-attempt, I was thinking about using a naive bayesian classifier, by converting each SameAs relation into a set of training samples. So, for each entity A with B sameas relations, I would iterate over each and train the classifier like:
classifier = Classifier()
for entity,sameas_entities in sameas_dataset:
entity_features = get_features(entity)
for other_entity in sameas_entities:
other_entity_features = get_features(other_entity)
classifier.train(cls=entity, ['left_'+f for f in entity_features] + ['right_'+f for f in other_entity_features])
classifier.train(cls=other_entity, ['left_'+f for f in other_entity_features] + ['right_'+f for f in entity_features])
And then use it like:
>>> print classifier.findSameAs(dict(speaker=997, session=8945305, sentence=32, obj_called='salty',isa='cat',eats='mice'), n=7)
[(1.0, '23432424'),(0.999, 'io43po5', (1.0, '2l3jk42'), (1.0, 'sdf90s8df'), (0.76, 'jerwljk'), (0.34, 'rlekwj32424'), (0.08, '09843jlk')]
>>> print classifier.findSameAs(dict(isa='cat',eats='mice'), n=7)
[(0.09, '23432424'), (0.06, 'jerwljk'), (0.03, 'rlekwj32424'), (0.001, '09843jlk')]
>>> print classifier.findMissingFeatures(dict(isa='cat',eats='mice'), n=4)
['obj_called','has_fur','has_claws','lives_at_zoo']
How viable is this approach? The initial batch training would be horribly slow, at least O(N^2), but incremental training support would allow updates to happen more quickly.
What are better approaches?
I think this is more of a clustering than a classification problem. Your entities are data points and the sameas data is a mapping of entities to clusters. In this case, clusters are the distinct 'things' your entities refer to.
You might want to take a look at semi-supervised clustering. A brief google search turned up the paper Active Semi-Supervision for Pairwise Constrained Clustering which gives pseudocode for an algorithm that is incremental/active and uses supervision in the sense that it takes training data indicating which entities are or are not in the same cluster. You could derive this easily from your sameas data, assuming that - for example - uids 87w39423 and 4535k3l535 are definitely distinct things.
However, to get this to work you need to come up with a distance metric based on the features in the data. You have a lot of options here, for example you could use a simple Hamming distance on the features, but the choice of metric function here is a little bit arbitrary. I'm not aware of any good ways of choosing the metric, but perhaps you have already looked into this when you were considering nearest neighbour algorithms.
You can come up with confidence scores using the distance metric from the centres of the clusters. If you want an actual probability of membership then you would want to use a probabilistic clustering model, like a Gaussian mixture model. There's quite a lot of software to do Gaussian mixture modelling, I don't know of any that is semi-supervised or incremental.
There may be other suitable approaches if the question you wanted to answer was something like "given an entity, which other entities are likely to refer to the same thing?", but I don't think that is what you are after.
You may want to take a look at this method:
"Large Scale Online Learning of Image Similarity Through Ranking" Gal Chechik, Varun Sharma, Uri Shalit and Samy Bengio, Journal of Machine Learning Research (2010).
[PDF] [Project homepage]
More thoughts:
What do you mean by 'entity'? Is entity the thing that is referred by 'obj_called'? Do you use the content of 'obj_called' to match different entities, e.g. 'John' is similar to 'John Doe'? Do you use proximity between sentences to indicate similar entities? What is the greater goal (task) of the mapping?

Training set - proportion of pos / neg / neutral sentences

I am hand tagging twitter messages as Positive, Negative, Neutral. I am try to appreciate is there some logic one can use to identify of the training set what proportion of message should be positive / negative and neutral ?
So for e.g. if I am training a Naive Bayes classifier with 1000 twitter messages should the proportion of pos : neg : neutral be 33 % : 33% : 33% or should it be 25 % : 25 % : 50 %
Logically in my head it seems that I i train (i.e. give more samples for neutral) that the system would be better at identifying neutral sentences then whether they are positive or negative - is that true ? or I am missing some theory here ?
Thanks
Rahul
The problem you're referring to is known as the imbalance problem. Many machine learning algorithms perform badly when confronted with imbalanced training data, i.e. when the instances of one class heavily outnumber those of the other class. Read this article to get a good overview of the problem and how to approach it. For techniques like naive bayes or decision trees it is always a good idea to balance your data somehow, e.g. by random oversampling (explained in the references paper). I disagree with mjv's suggestion to have a training set match the proportions in the real world. This may be appropriate in some cases but I'm quite confident it's not in your setting. For a classification problem like the one you describe, the more the sizes of the class sets differ, the more most ML algorithms will have problems discriminating the classes properly. However, you can always use the information about which class is the largest in reality by taking it as a fallback such that when the classifier's confidence for a particular instance is low or this instance couldn't be classified at all, you would assign it the largest class.
One further remark: finding the positivity/negativity/neutrality in Twitter messages seems to me to be a question of degree. As such, it may be viewes as a regression rather than a classification problem, i.e. instead of a three class scheme you perhaps may want calculate a score which tells you how positive/negative the message is.
There are many other factors... but an important one (in determining a suitable ratio and volume of training data) is the expected distribution of each message category (Positive, Neutral, Negative) in the real world. Effectively, a good baseline for the training set (and the control set) is
[qualitatively] as representative as possible of the whole "population"
[quantitatively] big enough that measurements made from such sets is statistically significant.
The effect of the [relative] abundance of a certain category of messages in the training set is hard to determine; it is in any case a lesser factor -or rather one that is highly sensitive to- other factors. Improvements in the accuracy of the classifier, as a whole, or with regards to a particular category, is typically tied more to the specific implementation of the classifier (eg. is it Bayesian, what are the tokens, are noise token eliminated, is proximity a factor, are we using bi-grams etc...) than to purely quantitative characteristics of the training set.
While the above is generally factual but moderately helpful for the selection of the training set's size and composition, there are ways of determining, post facto, when an adequate size and composition of training data has been supplied.
One way to achieve this is to introduce a control set, i.e. one manually labeled but that is not part of the training set and to measure for different test runs with various subsets of the training set, the recall and precision obtained for each category (or some similar accuracy measurements), for this the classification of the control set. When these measurements do not improve or degrade, beyond what's statistically representative, the size and composition of the training [sub-]set is probably the right one (unless it is an over-fitting set :-(, but that's another issue altogether... )
This approach, implies that one uses a training set that could be 3 to 5 times the size of the training subset effectively needed, so that one can build, randomly (within each category), many different subsets for the various tests.

Resources