Shared Memory Fork Process Learning in Linux - linux

Good day to all! I am just trying to learn more about parent and child processes in Linux using the fork () function.
I am trying to make a very simple program where after setting up the shared memory segment, i can get a result from a child and output it in the parent .
My problem is it does not seem to work. Here is what i have so far
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/shm.h>
#include <sys/stat.h>
#include <sys/types.h>
#define SZ 20
typedef struct
{
int size;
int cz[SZ];
}shared_data;
shared_data* Collatz(int);
int main (void)
{
pid_t pid;
int seg_id,size=sizeof(shared_data);
seg_id=shmget(IPC_PRIVATE,size,S_IRUSR | S_IWUSR);
shared_data *sd=(shared_data *)shmat(seg_id,NULL, 0);
int usr=-1,count,i;
while(usr<1 ||usr >9)
{
printf("Please Enter a Number between 1-9:");
scanf("%d",&usr);
}
pid=fork();
if(pid<0)
{
printf("Fork Failed");
return 1;
}
if(pid==0)
{
sd=Collatz(usr);
shmdt(sd);
}
else
{
wait(NULL);
printf("\nThe Sequence is: %d ",count);
for(i=0;i<sd->size;i++)
{
printf(" %d ",sd->cz[i]);
}
printf("\n");
}
return 0;
}
shared_data* Collatz(int val)
{
int i=0;
shared_data *data=malloc(sizeof(shared_data));
data->cz[i]=val;
while(val!=1)
{
i++;
if(val%2==0)
val=val/2;
else
val=(3*val)+1;
data->cz[i]=val;
}
data->size=i;
return data;
}

You are assigning to the memory allocated with malloc, not the memory allocated with shmget/shmat. I'm not 100% sure what you intended, but it may be that simply changing the assignment in the child to the following would do the trick. (This will overlay the shared memory with the mallocd content that you initialized in Collatz().)
*sd=Collatz(usr);
[Edit: I should add that your current code sd=Collatz(usr) is instead overwriting the pointer value you got back from the shmat() call rather than the pointed-to memory area.]

Related

Why the program didn't execute some sentences in this C programming or unix programming(execvp() System calls)?

I have the following program, when I run the program, I feel really confused that why my program didn't excute
int num=i;
printf("it is No.%d !",num);
printf("hello , I will excute execvp!");
My program basically create 6 child processes to excute executionbode() function, and then use execvp to overload original program. However, everytime when I run the program, the string "hello, I will execute execvp" never shows up! Also I think those three sentences above also didn't execute in the running program? can someone tell me why? Here is my program
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <sys/types.h>
#include "makeargv.h"
#include "redirection.h"
#include <sys/wait.h>
int executionnode(int i);
int main(){
pid_t childpid;
int i;
int row=6;
for(i=0;i<row;i++)
{ childpid=fork();
if(childpid==0)
continue;
else if (childpid>0)
executionnode(i);
else {
perror("something wrong");
exit(1);
}
}
}
int executionnode(int i){
sleep(i);
printf("hello, I am process:%ld\n",(long)getpid());
wait(NULL);
char *execArgs[] = { "echo", "Hello, World!", NULL };
int num=i;
printf("it is No.%d !",num);
printf("hello , I will excute execvp!");
execvp("echo", execArgs);
}
Can someone tell me why? and how to fix it? I feel it is really strange? Is it because of execvp() functions? I just began to learn operating system,so I am really confused about it! Thank you for helping me!
As user3629249 said you have some confusion. You'll get many children of children of children... and that wait(NULL) is useless :).
I used this structure to got your goal in my OS subject excercises.
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#define N 5
int main(int argc, char const *argv[])
{
pid_t pid,pids[N];
int i, num_pids = 0;
int state = 0;
int prior[]={1,3,5,2,4};
pid_t parent_pid = getpid();
printf("Parent pid is %i\n",father_pid);
// This for loop is the key
for (i = 0; i < N && getppid() != parent_pid; i++)
{
if ((pid = fork()) < 0)
{
printf ("fork error\n");
exit(-1);
}
pids[num_pids++] = pid;
}
if (pid == 0) // Child processes
{
printf("I am the child %i\n",getpid());
}
else // Parent process
{
for (i = 0; i < N; i++)
{
int pid_index = prior[i]-1; // Array starts with 0
pid = waitpid(pids[pid_index]);
printf("Children %i ended\n",pids[indice_pid]);
printf("%i alive children\n",N-1-i);
}
}
return 0;
}
This structure works because you save the parent's pid in parent_pid variable and compare the parent of each process pid with getppid(). If this pid is different that parent_pid, this proccess is the parent. In another case the process is a child so it has to stop (these processes don't have to fork). With this way you can get only the forks you need.
The rest of the code is the same: Pid==0 is child process and any other is the parent. You can call executionnode(int i) in child processes block (remember, pid==0 !!! you have a mistake). i variable should have the right value in each call I think.
Good luck!

How to read the valgrind return value from child processes?

i am running valgrind in a bash script to use it for automated testing. I already added the option to return an exit code on error and to trace children.
/usr/bin/valgrind --error-exitcode=1 --trace-children=yes ./test_prog
My programm forks other processes and I can see the output of valgrind running the different processes in the terminal. The problem is, that the exit code option only seems to work when there is an error in the parent process. Because even though there is an error (SIGSEGV) in one of the child processes the exit code of valgrind is still 0, which means it is useless for the automated testing of several processes.
So is there any option, that would make the parent valgrind catch the error in the child and return it? I already looked into the man page. Maybe there would be another solution to this problem, like grepping the output of the children to the terminal for any error messages?
Thanks in advance.
it's important to implement a proper error handling in the code. Compare following two pieces of code.
A:
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <signal.h>
#define BUFSIZE 1024
int incr=0;
int loop=1;
void runTicks(const char *n) {
time_t t;
char buf[BUFSIZE+1];
pid_t pid;
int counter;
pid=getpid();
counter=0;
while(loop) {
sleep(1);
t=time(NULL);
strftime(buf,BUFSIZE,"%Y.%m.%d %H:%M:%S",localtime(&t));
printf("%s[%d] %s\n",n,pid,buf);
counter+=incr;
if(counter>5) memcpy((void *)1,buf,1); /* this line is for causing SEGV */
}
}
void handler(int s) {
if(s==SIGCHLD) {
printf("Received SIGCHLD\n");
loop=0;
}
}
void setHandler() {
struct sigaction sa;
sa.sa_handler=handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags=SA_NOCLDSTOP;
if(sigaction(SIGCHLD,&sa,NULL)!=0) {
printf("Cannot set signal handler, there is no purpose in running the test\n");
exit(0);
}
}
int main() {
pid_t pid;
printf("start\n");
pid=fork();
if(pid==-1) {
printf("fork failed\n");
exit(10);
}
if(pid==0) {
printf("child\n");
incr=1;
usleep(500000);
runTicks("C");
exit(1);
} else {
printf("parent spawned child pid=%d\n",pid);
setHandler();
runTicks("P");
exit(0);
}
}
B:
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <signal.h>
#include <sys/wait.h>
#define BUFSIZE 1024
int incr=0;
int loop=1;
void runTicks(const char *n) {
time_t t;
char buf[BUFSIZE+1];
pid_t pid;
int counter;
pid=getpid();
counter=0;
while(loop) {
sleep(1);
t=time(NULL);
strftime(buf,BUFSIZE,"%Y.%m.%d %H:%M:%S",localtime(&t));
printf("%s[%d] %s\n",n,pid,buf);
counter+=incr;
if(counter>5) memcpy((void *)1,buf,1); /* this line is for causing SEGV */
}
}
void handler(int s) {
if(s==SIGCHLD) {
int status;
printf("Received SIGCHLD\n");
wait(&status);
printf("Exit code from child: %d\n",status);
if(status!=0) exit(status);
loop=0;
}
}
void setHandler() {
struct sigaction sa;
sa.sa_handler=handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags=SA_NOCLDSTOP;
if(sigaction(SIGCHLD,&sa,NULL)!=0) {
printf("Cannot set signal handler, there is no purpose in running the test\n");
exit(0);
}
}
int main() {
pid_t pid;
printf("start\n");
pid=fork();
if(pid==-1) {
printf("fork failed\n");
exit(10);
}
if(pid==0) {
printf("child\n");
incr=1;
usleep(500000);
runTicks("C");
exit(1);
} else {
printf("parent spawned child pid=%d\n",pid);
setHandler();
runTicks("P");
exit(0);
}
}
Run those first without valgrind and compare the exit code of both programs. Then run them under valgrind and enjoy.
Using such construction you even don't need to run it under valgrind, to catch segfaults from child processes.

Differences between POSIX threads on OSX and LINUX?

Can anyone shed light on the reason that when the below code is compiled and run on OSX the 'bartender' thread skips through the sem_wait() in what seems like a random manner and yet when compiled and run on a Linux machine the sem_wait() holds the thread until the relative call to sem_post() is made, as would be expected?
I am currently learning not only POSIX threads but concurrency as a whole so absoutely any comments, tips and insights are warmly welcomed...
Thanks in advance.
#include <stdio.h>
#include <stdlib.h>
#include <semaphore.h>
#include <fcntl.h>
#include <unistd.h>
#include <pthread.h>
#include <errno.h>
//using namespace std;
#define NSTUDENTS 30
#define MAX_SERVINGS 100
void* student(void* ptr);
void get_serving(int id);
void drink_and_think();
void* bartender(void* ptr);
void refill_barrel();
// This shared variable gives the number of servings currently in the barrel
int servings = 10;
// Define here your semaphores and any other shared data
sem_t *mutex_stu;
sem_t *mutex_bar;
int main() {
static const char *semname1 = "Semaphore1";
static const char *semname2 = "Semaphore2";
pthread_t tid;
mutex_stu = sem_open(semname1, O_CREAT, 0777, 0);
if (mutex_stu == SEM_FAILED)
{
fprintf(stderr, "%s\n", "ERROR creating semaphore semname1");
exit(EXIT_FAILURE);
}
mutex_bar = sem_open(semname2, O_CREAT, 0777, 1);
if (mutex_bar == SEM_FAILED)
{
fprintf(stderr, "%s\n", "ERROR creating semaphore semname2");
exit(EXIT_FAILURE);
}
pthread_create(&tid, NULL, bartender, &tid);
for(int i=0; i < NSTUDENTS; ++i) {
pthread_create(&tid, NULL, student, &tid);
}
pthread_join(tid, NULL);
sem_unlink(semname1);
sem_unlink(semname2);
printf("Exiting the program...\n");
}
//Called by a student process. Do not modify this.
void drink_and_think() {
// Sleep time in milliseconds
int st = rand() % 10;
sleep(st);
}
// Called by a student process. Do not modify this.
void get_serving(int id) {
if (servings > 0) {
servings -= 1;
} else {
servings = 0;
}
printf("ID %d got a serving. %d left\n", id, servings);
}
// Called by the bartender process.
void refill_barrel()
{
servings = 1 + rand() % 10;
printf("Barrel refilled up to -> %d\n", servings);
}
//-- Implement a synchronized version of the student
void* student(void* ptr) {
int id = *(int*)ptr;
printf("Started student %d\n", id);
while(1) {
sem_wait(mutex_stu);
if(servings > 0) {
get_serving(id);
} else {
sem_post(mutex_bar);
continue;
}
sem_post(mutex_stu);
drink_and_think();
}
return NULL;
}
//-- Implement a synchronized version of the bartender
void* bartender(void* ptr) {
int id = *(int*)ptr;
printf("Started bartender %d\n", id);
//sleep(5);
while(1) {
sem_wait(mutex_bar);
if(servings <= 0) {
refill_barrel();
} else {
printf("Bar skipped sem_wait()!\n");
}
sem_post(mutex_stu);
}
return NULL;
}
The first time you run the program, you're creating named semaphores with initial values, but since your threads never exit (they're infinite loops), you never get to the sem_unlink calls to delete those semaphores. If you kill the program (with ctrl-C or any other way), the semaphores will still exist in whatever state they are in. So if you run the program again, the sem_open calls will succeed (because you don't use O_EXCL), but they won't reset the semaphore value or state, so they might be in some odd state.
So you should make sure to call sem_unlink when the program STARTS, before calling sem_open. Better yet, don't use named semaphores at all -- use sem_init to initialize a couple of unnamed semaphores instead.

list_for_each_entry does not work

i write a module about link list with pri as the head node. It's empty initially.
In pri_init(), I insert 3 nodes into the list and assign value to each of them. Finally, i want to use list_for_each_entry to iterate the list and print out the nodes' value.
But actually, it just printed out only 1 random value in list_for_each_entry{...} in pri_init().
Instead, if I use container_of within a for() loop to iterate the list, the result is correct.
Can anyone tell me why? Thanks a lot.
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <asm/uaccess.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
MODULE_LICENSE("GPL");
struct pri_listitem
{
int v;
struct list_head list;
};
LIST_HEAD(pri);
void pri_exit(void)
{
struct pri_listitem *list_p, *next;
list_for_each_entry_safe(list_p, next, &pri, list)
{
list_del(&list_p->list);
kfree(list_p);
}
printk(KERN_ALERT "***** device pri exit() ***** \n");
}
int pri_init(void)
{
int i;
struct pri_listitem *list_p;
printk(KERN_ALERT "***** device pri init() ***** \n");
// Inserting 3 nodes
for(i=1; i<=3; ++i)
{
list_p = kmalloc(sizeof(struct pri_listitem),GFP_KERNEL);
if(!list_p)
{
printk(KERN_DEBUG "Error: alloction memory for list_p\n");
return -ENOMEM;
}
memset(list_p, 0, sizeof(struct pri_listitem));
list_p->v = i;
list_add(&(list_p->list), &pri);
}
printk(KERN_DEBUG "value of the 3 nodes:\n");
list_for_each_entry(list_p, &pri, list);
{
printk(KERN_DEBUG "%d\n",list_p->v); // print nodes' value
}
return 0;
}
module_init(pri_init);
module_exit(pri_exit);
You simply had a semi colon at the end of your list for each entry, this meant your position was set to a garbage value in memory (not really garbage just an offset behind your allocated list_head pri structure in memory) hence you getting random values for the dereference (you unluckily landed in memory you could access so it's hard to spot the error sometimes.) The single run through the loop should have tipped you off as the following section on the list_for_each_entry simply executed as a scoped block.

How do I use ioctl() to manipulate my kernel module?

So I'm trying to write a kernel module that uses the linux/timer.h file. I got it to work inside just the module, and now I am trying to get it to work from a user program.
Here is my kernel module:
//Necessary Includes For Device Drivers.
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/proc_fs.h>
#include <asm/uaccess.h>
#include <linux/timer.h>
#include <linux/ioctl.h>
#define DEVICE_NAME "mytimer"
#define DEVICE_FILE_NAME "mytimer"
#define MAJOR_NUM 61
#define MINOR_NUM 0
MODULE_LICENSE("Dual BSD/GPL");
static struct timer_list my_timer;
struct file_operations FileOps =
{
//No File Operations for this timer.
};
//Function to perform when timer expires.
void TimerExpire(int data)
{
printk("Timer Data: %d\n", data);
}
//Function to set up timers.
void TimerSetup(void)
{
setup_timer(&my_timer, TimerExpire, 5678);
mod_timer(&my_timer, jiffies + msecs_to_jiffies(5000));
}
//Module Init and Exit Functions.
int init_module(void)
{
int initResult = register_chrdev(MAJOR_NUM, "mytimer", &FileOps);
if (initResult < 0)
{
printk("Cannot obtain major number %d\n", MAJOR_NUM);
return initResult;
}
printk("Loading MyTimer Kernel Module...\n");
return 0;
}
void cleanup_module(void)
{
unregister_chrdev(MAJOR_NUM, "mytimer");
printk("Unloading MyTimer Kernel Module...\n");
}
More specifically, I want my user program to call the TimerSetup() function. I know that I'll need to use ioctl() but I'm not sure how to specify in my MODULE FILE that TimerSetup() should be callable via ioctl().
Also, my second question: I was able to insmod my module and also mknod into /dev/mytimer with the correct major number. But when I tried to open() it so that I can get the file descriptor from it, it kept returning -1, which I'm assuming is wrong. I made sure the permissions were fine (in fact, I made it 777 just to be sure)... It still doesn't work... Is there something I'm missing?
Here is the user program just in case:
#include <stdio.h>
int main(int argc, char* argv[])
{
int fd = open("/dev/mytimer", "r");
printf("fd: %d\n", fd);
return 0;
}
The example code you need can be found in drivers/watchdog/softdog.c (from Linux 2.6.33 at the time this was written), which illustrates proper file operations as well as how to permit userland to fill a structure with ioctl().
It's actually a great, working tutorial for anyone who needs to write trivial character device drivers.
I dissected softdog's ioctl interface when answering my own question, which may be helpful to you.
Here's the gist of it (though far from exhaustive) ...
In softdog_ioctl() you see a simple initialization of struct watchdog_info that advertises functionality, version and device information:
static const struct watchdog_info ident = {
.options = WDIOF_SETTIMEOUT |
WDIOF_KEEPALIVEPING |
WDIOF_MAGICCLOSE,
.firmware_version = 0,
.identity = "Software Watchdog",
};
We then look at a simple case where the user just wants to obtain these capabilities:
switch (cmd) {
case WDIOC_GETSUPPORT:
return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0;
... which of course, will fill the corresponding userspace watchdog_info with the initialized values above. If copy_to_user() fails, -EFAULT is returned which causes the corresponding userspace ioctl() call to return -1 with a meaningful errno being set.
Note, the magic requests are actually defined in linux/watchdog.h , so that the kernel and userspace share them:
#define WDIOC_GETSUPPORT _IOR(WATCHDOG_IOCTL_BASE, 0, struct watchdog_info)
#define WDIOC_GETSTATUS _IOR(WATCHDOG_IOCTL_BASE, 1, int)
#define WDIOC_GETBOOTSTATUS _IOR(WATCHDOG_IOCTL_BASE, 2, int)
#define WDIOC_GETTEMP _IOR(WATCHDOG_IOCTL_BASE, 3, int)
#define WDIOC_SETOPTIONS _IOR(WATCHDOG_IOCTL_BASE, 4, int)
#define WDIOC_KEEPALIVE _IOR(WATCHDOG_IOCTL_BASE, 5, int)
#define WDIOC_SETTIMEOUT _IOWR(WATCHDOG_IOCTL_BASE, 6, int)
#define WDIOC_GETTIMEOUT _IOR(WATCHDOG_IOCTL_BASE, 7, int)
#define WDIOC_SETPRETIMEOUT _IOWR(WATCHDOG_IOCTL_BASE, 8, int)
#define WDIOC_GETPRETIMEOUT _IOR(WATCHDOG_IOCTL_BASE, 9, int)
#define WDIOC_GETTIMELEFT _IOR(WATCHDOG_IOCTL_BASE, 10, int)
WDIOC obviously signifying "Watchdog ioctl"
You can easily take that a step further, having your driver do something and place the result of that something in the structure and copy it to userspace. For instance, if struct watchdog_info also had a member __u32 result_code. Note, __u32 is just the kernel's version of uint32_t.
With ioctl(), the user passes the address of an object, be it a structure, integer, whatever to the kernel expecting the kernel to write its reply in an identical object and copy the results to the address that was provided.
The second thing you are going to need to do is make sure your device knows what to do when someone opens, reads from it, writes to it, or uses a hook like ioctl(), which you can easily see by studying softdog.
Of interest is:
static const struct file_operations softdog_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.write = softdog_write,
.unlocked_ioctl = softdog_ioctl,
.open = softdog_open,
.release = softdog_release,
};
Where you see the unlocked_ioctl handler going to ... you guessed it, softdog_ioctl().
I think you might be juxtaposing a layer of complexity that really doesn't exist when dealing with ioctl(), it really is that simple. For that same reason, most kernel developers frown on new ioctl interfaces being added unless they are absolutely necessary. Its just too easy to lose track of the type that ioctl() is going to fill vs the magic you use to do it, which is the primary reason that copy_to_user() fails often resulting in the kernel rotting with hordes of userspace processes stuck in disk sleep.
For a timer, I agree, ioctl() is the shortest path to sanity.
You are missing a .open function pointer in your file_operations structure to specify the function to be called when a process attempts to open the device file. You will need to specify a .ioctl function pointer for your ioctl function as well.
Try reading through The Linux Kernel Module Programming Guide, specifically chapters 4 (Character Device Files) and 7 (Talking to Device Files).
Chapter 4 introduces the file_operations structure, which holds pointers to functions defined by the module/driver that perform various operations such as open or ioctl.
Chapter 7 provides information on communicating with a module/drive via ioctls.
Linux Device Drivers, Third Edition is another good resource.
Minimal runnable example
Tested in a fully reproducible QEMU + Buildroot environment, so might help others get their ioctl working. GitHub upstream:
kernel module |
shared header |
userland.
The most annoying part was understanding that some low ids are hijacked: ioctl is not called if cmd = 2 , you have to use _IOx macros.
Kernel module:
#include <asm/uaccess.h> /* copy_from_user, copy_to_user */
#include <linux/debugfs.h>
#include <linux/module.h>
#include <linux/printk.h> /* printk */
#include "ioctl.h"
MODULE_LICENSE("GPL");
static struct dentry *dir;
static long unlocked_ioctl(struct file *filp, unsigned int cmd, unsigned long argp)
{
void __user *arg_user;
union {
int i;
lkmc_ioctl_struct s;
} arg_kernel;
arg_user = (void __user *)argp;
pr_info("cmd = %x\n", cmd);
switch (cmd) {
case LKMC_IOCTL_INC:
if (copy_from_user(&arg_kernel.i, arg_user, sizeof(arg_kernel.i))) {
return -EFAULT;
}
pr_info("0 arg = %d\n", arg_kernel.i);
arg_kernel.i += 1;
if (copy_to_user(arg_user, &arg_kernel.i, sizeof(arg_kernel.i))) {
return -EFAULT;
}
break;
case LKMC_IOCTL_INC_DEC:
if (copy_from_user(&arg_kernel.s, arg_user, sizeof(arg_kernel.s))) {
return -EFAULT;
}
pr_info("1 arg = %d %d\n", arg_kernel.s.i, arg_kernel.s.j);
arg_kernel.s.i += 1;
arg_kernel.s.j -= 1;
if (copy_to_user(arg_user, &arg_kernel.s, sizeof(arg_kernel.s))) {
return -EFAULT;
}
break;
default:
return -EINVAL;
break;
}
return 0;
}
static const struct file_operations fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = unlocked_ioctl
};
static int myinit(void)
{
dir = debugfs_create_dir("lkmc_ioctl", 0);
/* ioctl permissions are not automatically restricted by rwx as for read / write,
* but we could of course implement that ourselves:
* https://stackoverflow.com/questions/29891803/user-permission-check-on-ioctl-command */
debugfs_create_file("f", 0, dir, NULL, &fops);
return 0;
}
static void myexit(void)
{
debugfs_remove_recursive(dir);
}
module_init(myinit)
module_exit(myexit)
Shared header between the kernel module and userland:
ioctl.h
#ifndef IOCTL_H
#define IOCTL_H
#include <linux/ioctl.h>
typedef struct {
int i;
int j;
} lkmc_ioctl_struct;
#define LKMC_IOCTL_MAGIC 0x33
#define LKMC_IOCTL_INC _IOWR(LKMC_IOCTL_MAGIC, 0, int)
#define LKMC_IOCTL_INC_DEC _IOWR(LKMC_IOCTL_MAGIC, 1, lkmc_ioctl_struct)
#endif
Userland:
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "../ioctl.h"
int main(int argc, char **argv)
{
int fd, arg_int, ret;
lkmc_ioctl_struct arg_struct;
if (argc < 2) {
puts("Usage: ./prog <ioctl-file>");
return EXIT_FAILURE;
}
fd = open(argv[1], O_RDONLY);
if (fd == -1) {
perror("open");
return EXIT_FAILURE;
}
/* 0 */
{
arg_int = 1;
ret = ioctl(fd, LKMC_IOCTL_INC, &arg_int);
if (ret == -1) {
perror("ioctl");
return EXIT_FAILURE;
}
printf("arg = %d\n", arg_int);
printf("ret = %d\n", ret);
printf("errno = %d\n", errno);
}
puts("");
/* 1 */
{
arg_struct.i = 1;
arg_struct.j = 1;
ret = ioctl(fd, LKMC_IOCTL_INC_DEC, &arg_struct);
if (ret == -1) {
perror("ioctl");
return EXIT_FAILURE;
}
printf("arg = %d %d\n", arg_struct.i, arg_struct.j);
printf("ret = %d\n", ret);
printf("errno = %d\n", errno);
}
close(fd);
return EXIT_SUCCESS;
}

Resources