Cassandra Tombstones Not Being Removed By DTCS? - cassandra

I have a Cassandra 2.1.4 cluster with 14 nodes. I am using it primarily for storing time series data collected via KairosDB.
The default TTL for data inserted into the column family named data_points (which is the biggest column family) is 12hrs. I have also set the gc_grace_seconds to 12 hrs.
In-spite of this my disk space keeps on increasing and it looks like tombstones are never dropped.
It looks like compactions are happening on a regular basis. The SSTable count does not seem outrageous either. It is constantly between ~10 to ~22. Compaction Strategy I am using is DTCS.
DESC keyspace -> http://pastebin.com/RW4rU76m
Am I doing anything wrong? Is there a way to mitigate this?
UPDATE: When I trigger a compaction manually, I see a drastic reduction in disk usage. It went from ~40GB to ~16GB. I also posted on the Cassandra user list and was suggested to move to a more recent version of Cassandra. Apparently in 2.1.4 this might be causing older data not to be dropped: https://issues.apache.org/jira/browse/CASSANDRA-8359

Related

SSTables row timestamps distribution messed up with TWCS

We're running Cassandra 2.1.14 and migrated to TWCS on one of our CFs a few months ago and since then, while getting better performance and avg SSTables read per query reduced drastically, we noticed old SSTables never get evicted.
Running Cassandra's sstableexpiredblockers utility we see the reason is old SSTabes's max timestamp are higher than even new SSTable's min timestamp, which means Cassandra won't try to evict even though the actual SSTables are completely tombstoned (we wrote a tiny java app that went through the SSTable directly to make sure).
So the question is - why do even very new SSTables have old rows?
Just to clarify: our code base NEVER update rows, and ALL rows have TTL.
Another question, given that this is our current situation, is there an easy way to force Cassandra to run eviction on old SSTables?
Attached is the SSTables and their min \ max timestamp:
So we found the root cause of the issue is read repair and speculative retry were enabled. disabling them and running major compaction once to delete the stale SSTables and everything worked as expected.

Cassandra - What is difference between TTL at table and inserting data with TTL

I have a Cassandra 2.1 cluster where we insert data though Java with TTL as the requirement of persisting the data is 30 days.
But this causes problem as the files with old data with tombstones is kept on the disk. This results in disk space being occupied by data which is not required. Repairs take a lot of time to clear this data (upto 3 days on a single node)
Is there a better way to delete the data?
I have come across this on datastax
Cassandra allows you to set a default_time_to_live property for an entire table. Columns and rows marked with regular TTLs are processed as described above; but when a record exceeds the table-level TTL, Cassandra deletes it immediately, without tombstoning or compaction. https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlAboutDeletes.html?hl=tombstone
Will the data be deleted more efficiently if I set TTL at table level instead of setting each time while inserting.
Also, documentation is for Cassandra 3, so will I have to upgrade to newer version to get any benefits?
Setting default_time_to_live applies the default ttl to all rows and columns in your table - and if no individual ttl is set (and cassandra has correct ntp time on all nodes), cassandra can easily drop those data safely.
But keep some things in mind: your application is still able so set a specific ttl for a single row in your table - then normal processing will apply. On top, even if the data is ttled it won't get deleted immediately - sstables are still immutable, but tombstones will be dropped during compaction.
What could help you really a lot - just guessing - would be an appropriate compaction strategy:
http://docs.datastax.com/en/archived/cassandra/3.x/cassandra/dml/dmlHowDataMaintain.html#dmlHowDataMaintain__twcs-compaction
TimeWindowCompactionStrategy (TWCS)
Recommended for time series and expiring TTL workloads.
The TimeWindowCompactionStrategy (TWCS) is similar to DTCS with
simpler settings. TWCS groups SSTables using a series of time windows.
During compaction, TWCS applies STCS to uncompacted SSTables in the
most recent time window. At the end of a time window, TWCS compacts
all SSTables that fall into that time window into a single SSTable
based on the SSTable maximum timestamp. Once the major compaction for
a time window is completed, no further compaction of the data will
ever occur. The process starts over with the SSTables written in the
next time window.
This help a lot - when choosing your time windows correctly. All data in the last compacted sstable will have roughly equal ttl values (hint: don't do out-of-order inserts or manual ttls!). Cassandra keeps the youngest ttl value in the sstable metadata and when that time has passed cassandra simply deletes the entire table as all data is now obsolete. No need for compaction.
How do you run your repair? Incremental? Full? Reaper? How big in terms of nodes and data is your cluster?
The quick answer is yes. The way it is implemented is by deleting the SStable/s directly from disk. Deleting an SStable without the need to compact will clear up disk space faster. But you need to be sure that the all the data in a specific sstable is "older" than the globally configured TTL for the table.
This is the feature referred to in the paragraph you quoted. It was implemented for Cassandra 2.0 so it should be part of 2.1

gc_grace_seconds to remove tombstone rows in cassandra

I am using awesome Cassandra DB (3.7.0) and I have questions about tombstone.
I have table called raw_data. This table has default TTL as 1 hour. This table gets new data every second. Then another processor reads one row and remove the row.
It seems like this raw_data table becomes slow at reading and writing after several days of running.
Is this because of deleted rows are staying as tombstone? This table already has TTL as 1 hour. Should I set gc_grace_period to something less than 10 days (default value) to remove tombstones quickly? (By the way, I am single-node DB)
Thank you in advance.
Deleting your data is the way to have tombstone problems. TTL is the other way.
It is pretty normal for a Cassandra cluster to become slower and slower after each delete, and your cluster will eventually refuse to read data from this table.
Setting gc_grace_period to less than the default 10 days is only one part of the equation. The other part is the compaction strategy you use. Indeed, in order to remove tombstones a compaction is needed.
I'd change my mind about my single-node cluster and I'd go with the minimum standard 3 nodes with RF=3. Then I'd design my project around something that doesn't explicitly delete data. If you absolutely need to delete data, make sure that C* runs compaction periodically and removes tombstones (or force C* to run compactions), and make sure to have plenty of IOPS, because compaction is very IO intensive.
In short Tombstones are used to Cassandra to mark the data is deleted, and replicate the same to other nodes so the deleted data doesn't re-appear. These tombstone will be stored in Cassandra till the gc_grace_period. Creating more tobestones might slow down your table. As you are using a single node Cassandra you don't have to replicate anything in other nodes, hence you can update your gc grace seconds to 1 day, which will not affect. In future if you are planning to add new nodes and data centers change this gc grace seconds.

Cassandra Tombstoning warning and failure thresholds breached

We are running a Titan Graph DB server backed by Cassandra as a persistent store and are running into an issue with reaching the limit on Cassandra tombstone thresholds that is causing our queries to fail / timeout periodically as data accumulates. It seems like the compaction is unable to keep up with the number of tombstones being added.
Our use case supports:
High read / write throughputs.
High sensitivity to reads.
Frequent updates to node values in Titan. causing rows to be updated in Cassandra.
Given the above use cases, we are already optimizing Cassandra to aggressively do the following:
Aggressive compaction by using the levelled compaction strategies
Using tombstone_compaction_interval as 60 seconds.
Using tombstone_threshold to be 0.01
Setting gc_grace_seconds to be 1800
Despite the following optimizations, we are still seeing warnings in the Cassandra logs similar to:
[WARN] (ReadStage:7510) org.apache.cassandra.db.filter.SliceQueryFilter: Read 0 live and 10350 tombstoned cells in .graphindex (see tombstone_warn_threshold). 8001 columns was requested, slices=[00-ff], delInfo={deletedAt=-9223372036854775808, localDeletion=2147483647}
Occasionally as time progresses, we also see the failure threshold breached and causes errors.
Our cassandra.yaml file has the tombstone_warn_threshold to be 10000, and the tombstone_failure_threshold to be much higher than recommended at 250000, with no real noticeable benefits.
Any help that can point us to the correct configurations would be greatly appreciated if there is room for further optimizations. Thanks in advance for your time and help.
Sounds like the root of your problem is your data model. You've done everything you can do to mitigate getting TombstoneOverwhelmingException. Since your data model requires such frequent updates causing tombstone creation a eventual consistent store like Cassandra may not be a good fit for your use case. When we've experience these types of issues we had to change our data model to fit better with Cassandra strengths.
About deletes http://www.slideshare.net/planetcassandra/8-axel-liljencrantz-23204252 (slides 34-39)
Tombstones are not compacted away until the gc_grace_seconds configuration on a table has elapsed for a given tombstone. So even increasing your compaction interval your tombstones will not be removed until gc_grace_seconds has elapsed, with the default being 10 days. You could try tuning gc_grace_seconds down to a lower value and do repairs more frequently (usually you want to schedule repairs to happen every gc_grace_seconds_in_days - 1 days).
So everyone here is right. If you repair and compact frequently you an reduce your gc_grace_seconds number.
It may also however be worth considering that Inserting Nulls is equivalent to a delete. This will increase your number of tombstones. Instead you'll want to insert the UNSET_VALUE if you're using prepared statements. Probably too late for you, but if anyone else comes here.
The variables you've tuned are helping you expire tombstones, but it's worth noting that while tombstones can not be purged until gc_grace_seconds, Cassandra makes no guarantees that tombstones WILL be purged at gc_grace_seconds. Indeed, tombstones are not compacted until the sstable containing the tombstone is compacted, and even then, it will not be eliminated if there is another sstable containing a cell that is shadowed.
This results in tombstones potentially persisting a very long time, especially if you're using sstables that are infrequently compacted (say, very large STCS sstables). To address this, tools exist such as the JMX endpoint to forceUserDefinedCompaction - if you're not adept at using JMX endpoints, tools to do this for you automatically exist such as http://www.encql.com/purge-cassandra-tombstones/

Cassandra TTL VS. Rotating Keyspaces for data Queueing

I am using Casandra 2.0
My write load is somewhat similar to the queueing antipattern mentioned here: datastax
I am looking at pushing 30 - 40GB of data into cassandra every 24 hours and expiring that data within 24 hours. My current approach is to set a TTL on everything that I insert.
I am experimenting with how I partition my data as seen here: cassandra wide vs skinny rows
I have two column families. The first family contains metadata and the second contains data. There are N metadata to 1 data and a metadata may be rewritten M times throughout the day to point to a new data.
I suspect that the metadata churn is causing problems with reads in that finding the right metadata may require scanning all M items.
I suspect that the data churn is leading to excessive work compacting and garbage collecting.
It seems like creating a keyspace for each day and dropping the old keyspace after 24 hours would remove remove the need to do compaction entirely.
Aside from having to handle issues with what keyspace the user reads from on requests that overlap keyspaces, are there any other major flaws with this plan?
From my practice using partitioning is much better idea than using ttl.
It reduces cpu pressure
It partitions your data in Oracle manner, so searches are faster.
You can change your mind and keep the old data; using ttl it is difficult(I see one option - to migrate data before deletion)
If your rows are wide your can make them narrower.

Resources