Cassandra TTL VS. Rotating Keyspaces for data Queueing - cassandra

I am using Casandra 2.0
My write load is somewhat similar to the queueing antipattern mentioned here: datastax
I am looking at pushing 30 - 40GB of data into cassandra every 24 hours and expiring that data within 24 hours. My current approach is to set a TTL on everything that I insert.
I am experimenting with how I partition my data as seen here: cassandra wide vs skinny rows
I have two column families. The first family contains metadata and the second contains data. There are N metadata to 1 data and a metadata may be rewritten M times throughout the day to point to a new data.
I suspect that the metadata churn is causing problems with reads in that finding the right metadata may require scanning all M items.
I suspect that the data churn is leading to excessive work compacting and garbage collecting.
It seems like creating a keyspace for each day and dropping the old keyspace after 24 hours would remove remove the need to do compaction entirely.
Aside from having to handle issues with what keyspace the user reads from on requests that overlap keyspaces, are there any other major flaws with this plan?

From my practice using partitioning is much better idea than using ttl.
It reduces cpu pressure
It partitions your data in Oracle manner, so searches are faster.
You can change your mind and keep the old data; using ttl it is difficult(I see one option - to migrate data before deletion)
If your rows are wide your can make them narrower.

Related

Provisioned write capacity in Cassandra

I need to capture time-series sensor data in Cassandra. The best practices for handling time-series data in DynamoDB is as follow:
Create one table per time period, provisioned with write capacity less than 1,000 write capacity units (WCUs).
Before the end of each time period, prebuild the table for the next period.
As soon as a table is no longer being written to, reduce its provisioned write capacity. Also reduce the provisioned read capacity of earlier tables as they age, and archive or delete the ones whose contents will rarely or never be needed.
Now I am wondering how I can implement the same concept in Cassandra! Is there any way to manually configure write/read capacity in Cassandra as well?
This really depends on your own requirements that you need to discuss with development, etc.
There are several ways to handle time-series data in Cassandra:
Have one table for everything. As Chris mentioned, just include the time component into partition key, like a day, and store data per sensor/day. If the data won't be updated, and you know in advance how long they will be kept, so you can set TTL to data, then you can use TimeWindowCompactionStrategy. Advantage of this approach is that you have only one table and don't need to maintain multiple tables - that's make easier for development and maintenance.
The same approach as you described - create a separate table for period of time, like a month, and write data into them. In this case you can effectively drop the whole table when data "expires". Using this approach you can update data if necessary, and don't require to set TTL on data. But this requires more work for development and ops teams as you need to reach multiple tables. Also, take into account that there are some limits on the number of tables in the cluster - it's recommended not to have more than 200 tables as every table requires a memory to keep metadata, etc. Although, some things, like, a bloom filter, could be tuned to occupy less memory for tables that are rarely read.
For cassandra just make a single table but include some time period in the partition key (so the partitions do not grow indefinitely and get too large). No table maintenance and read/write capacity is really more dependent on workload and schema, size of cluster etc but shouldn't really need to be worried about except for sizing the cluster.

Cassandra data model too many table

I have a single structured row as input with write rate of 10K per seconds. Each row has 20 columns. Some queries should be answered on these inputs. Because most of the queries needs different WHERE, GROUP BY or ORDER BY, The final data model ended up like this:
primary key for table of query1 : ((column1,column2),column3,column4)
primary key for table of query2 : ((column3,column4),column2,column1)
and so on
I am aware of the limit in number of tables in Cassandra data model (200 is warning and 500 would fail)
Because for every input row I should do an insert in every table, the final write per seconds became big * big data!:
writes per seconds = 10K (input)
* number of tables (queries)
* replication factor
The main question: am I on the right path? Is it normal to have a table for every query even when the input rate is already so high?
Shouldn't I use something like spark or hadoop instead of relying on bare datamodel? Or event Hbase instead of Cassandra?
It could be that Elassandra would resolve your problem.
The query system is quite different from CQL, but the duplication for indexing would automatically be managed by Elassandra on the backend. All the columns of one table will be indexed so the Elasticsearch part of Elassandra can be used with the REST API to query anything you'd like.
In one of my tests, I pushed a huge amount of data to an Elassandra database (8Gb) going non-stop and I never timed out. Also the search engine remained ready pretty much the whole time. More or less what you are talking about. The docs says that it takes 5 to 10 seconds for newly added data to become available in the Elassandra indexes. I guess it will somewhat depend on your installation, but I think that's more than enough speed for most applications.
The use of Elassandra may sound a bit hairy at first, but once in place, it's incredible how fast you can find results. It includes incredible (powerful) WHERE for sure. The GROUP BY is a bit difficult to put in place. The ORDER BY is simple enough, however, when (re-)ordering you lose on speed... Something to keep in mind. On my tests, though, even the ORDER BY equivalents was very fast.

What is the best way to query timeseries data with cassandra?

My table is a time series one. The queries are going to process the latest entries and TTL expire them after successful processing. If they are not successfully processed, TTL will not set.
The only query I plan to run on this is to select all entries for a given entry_type. They will be processed and records corresponding to processed entries will be expired.
This way every time I run this query I will get all records in the table that are not processed and processing will be done. Is this a reasonable approach?
Would using a listenablefuture with my own executor add any value to this considering that the thread doing the select is just processing.
I am concerned about the TTL and tombstones. But if I use clustering key of timeuuid type is this ok?
You are right one important thing getting in your way will be tombstones. By Default you will keep them around for 10 days. Depending on your access patter this might cause significant problems. You can lower this by setting the directly on the table or change it in the cassandra yaml file. Then it will be valid for all the newly created table gc_grace_seconds
http://docs.datastax.com/en/cql/3.1/cql/cql_reference/tabProp.html
It is very important that you make sure you are running the repair on whole cluster once within this period. So if you lower this setting to let's say 2 days, then within two days you have to have one full repair done on the cluster. This is very important because processed data will reaper. I saw this happening multiple times, and is never pleasant especially if you are using cassandra as a queue and it seems to me that you might be using it in your solution. I'll try to give some tips at the end of the answer.
I'm slightly worried about you setting the ttl dynamically depending on result. What would be the point of inserting the ttl-ed data that was successful and keeping forever the data that wasn't. I guess some sort of audit or something similar. Again this is a queue pattern, try to avoid this if possible. Also one thing to keep in mind is that you will almost always insert the data once in the beginning and then once again with the ttl should your processing be o.k.
Also getting all entries might be a bit tricky. For very moderate load 10-100 req/s this might be reasonable but if you have thousands per second getting all the requests every time might not be a good idea. At least not if you put them into single partition.
Separating the workload is also good idea. So yes using listenable future seems totally legit.
Setting clustering key to be timeuuid is usually the case with time series thata and I totally agree with you on this one.
In reality as I mentioned earlier you have to to take into account you will be saving 10 days worth of data (unless you tweak it) no matter what you do, it doesn't matter if you ttl it. It's still going to be ther, and every time cassandra will scan the partition will have to read the ttl-ed columns. In short this is just pain. I would seriously consider actually using something as kafka if I were you because what you are describing simply looks to me like a queue.
If you still want to stick with cassandra then please consider using buckets (adding date info to partitioning key and having a composite partitioning key). Depending on the load you are expecting you will have to bucket by month, week, day, hour even minutes. In some cases you might even want to add artificial columns to reduce load on the cluster. But then again this might be out of scope of this question.
Be very careful when using cassandra as a queue, it's a known antipattern. You can do it, but there are a lot of variables and it extremely depends on the load you are using. I once consulted a team that sort of went down the path of cassandra as a queue. Since basically using cassandra there was a must I recommended them bucketing the data by day (did some calculations that proved this is o.k. time unit) and I also had a look at this solution https://github.com/paradoxical-io/cassieq basically there are a lot of good stuff in this repo when using cassandra as a queue, data models etc. Basically this team had zombie rows, slow reading because of the tombstones etc. etc.
Also the way you described it it might happen that you have "hot rows" basically since you would just have one wide partition where all your data would go some nodes in the cluster might not even be that good utilised. This can be avoided by artificial columns.
When using cassandra as a queue it's very easy to mess a lot of things up. (But it's possible for moderate workloads)

Performance - TTL vs Deleting a row in Cassandra

We have a massive set of data that is written in to millions of rows in cassandra. We also have a scheduler that needs to process these records and remove them after processing them successfully.
Was wondering if Deleting the row after processing vs Marking a row with a TTL (essentially delaying its deletion).
Are there any pros / cons with Deletion vs TTL w.r.t Cassandra performance ?.
Thanks much
_DD
When using TTL the record is not removed from storage immediately, it is marked as tombstone. It gets physically removed only when the compaction occurs. Till that time the data impacts the nodes processing as it consumes the resources till the compaction happens. When you do a range query event the deleted(marked as tombstone) records are scanned by Cassandra. So using TTL to delete too many entries is considered as anti-pattern. The recommendation is to use temporary tables so that individual rows need not be removed. Just drop the entire table.
From what little information you have given here it sounds to me that you are using Cassandra as a queue which is a well known anti-pattern. You can read more about that here:
http://www.datastax.com/dev/blog/cassandra-anti-patterns-queues-and-queue-like-datasets
However to answer your basic question there is little difference in performance between using TTL and deletes. TTL's in C* are handled as tombstones which is the same as a delete. The major difference is that a tombstone is not written to a record who's TTL has expired until that record is read again. When a delete is called a tombstone is immediately created. Tombstones in general cause significant performance problems within C* and while there are some methods to mitigate the issues that they create having large numbers of them usually point to a poor data model or poor use case for C*. If you are really looking at using C* as a queue why not look at using something more fit for that purpose such as Redis?
Based on what I've read, TTL will probably be as fast as your fastest delete process could be. The reason for this is that TTL doesn't have to seek the data in order to mark it with a tombstone. The TTL lives on the record and when the record is read and the TTL has expired, then it is marked with a tombstone.
http://docs.datastax.com/en/cql/3.1/cql/cql_using/use_expire_c.html

Table with heavy writes and some reads in Cassandra. Primary key searches taking 30 seconds. (Queue)

Have a table set up in Cassandra that is set up like this:
Primary key columns
shard - an integer between 1 and 1000
last_used - a timestamp
Value columns:
value - a 22 character string
Example if how this table is used:
shard last_used | value
------------------------------------
457 5/16/2012 4:56pm NBJO3poisdjdsa4djmka8k >-- Remove from front...
600 6/17/2013 5:58pm dndiapas09eidjs9dkakah |
...(1 million more rows) |
457 NOW NBJO3poisdjdsa4djmka8k <-- ..and put in back
The table is used as a giant queue. Very many threads are trying to "pop" the row off with the lowest last_used value, then update the last_used value to the current moment in time. This means that once a row is read, since last_used is part of the primary key, that row is deleted, then a new row with the same shard, value, and updated last_used time is added to the table, at the "end of the queue".
The shard is there because so many processes are trying to pop the oldest row off the front of the queue and put it at the back, that they would severely bottleneck each other if only one could access the queue at the same time. The rows are randomly separated into 1000 different "shards". Each time a thread "pops" a row off the beginning of the queue, it selects a shard that no other thread is currently using (using redis).
Holy crap, we must be dumb!
The problem we are having is that this operation has become very slow on the order of about 30 seconds, a virtual eternity.
We have only been using Cassandra for less than a month, so we are not sure what we are doing wrong here. We have gotten some indication that perhaps we should not be writing and reading so much to and from the same table. Is it the case that we should not be doing this in Cassandra? Or is there perhaps some nuance in the way we are doing it or the way that we have it configured that we need to change and/or adjust? How might be trouble-shoot this?
More Info
We are using the MurMur3Partitioner (the new random partitioner)
The cluster is currently running on 9 servers with 2GB RAM each.
The replication factor is 3
Thanks so much!
This is something you should not use Cassandra for. The reason you're having performance issues is because Cassandra has to scan through mountains of tombstones to find the remaining live columns. Every time you delete something Cassandra writes a tombstone, it's a marker that the column has been deleted. Nothing is actually deleted from disk until there is a compaction. When compacting Cassandra looks at the tombstones and determines which columns are dead and which are still live, the dead ones are thrown away (but then there is also GC grace, which means that in order to avoid spurious resurrections of columns Cassandra keeps the tombstones around for a while longer).
Since you're constantly adding and removing columns there will be enormous amounts of tombstones, and they will be spread across many SSTables. This means that there is a lot of overhead work Cassandra has to do to piece together a row.
Read the blog post "Cassandra anti-patterns: queues and queue-like datasets" for some more details. It also shows you how to trace the queries to verify the issue yourself.
It's not entirely clear from your description what a better solution would be, but it very much sounds like a message queue like RabbitMQ, or possibly Kafka would be a much better solution. They are made to have a constant churn and FIFO semantics, Cassandra is not.
There is a way to make the queries a bit less heavy for Cassandra, which you can try (although I still would say Cassandra is the wrong tool for this job): if you can include a timestamp in the query you should hit mostly live columns. E.g. add last_used > ? (where ? is a timestamp) to the query. This requires you to have a rough idea of the first timestamp (and don't do a query to find it out, that would be just as costly), so it might not work for you, but it would take some of the load off of Cassandra.
The system appears to be under stress (2GB or RAM may be not enough).
Please have nodetool tpstats run and report back on its results.
Use RabbitMQ. Cassandra is probably a bad choice for this application.

Resources