sum even integer in a list of integer (without loop) - python-3.x

I have a task: create a function that takes a integer list as parameter and returns the sum of all even integer in an integer list, without using any kinds of loop. All addition must be done by + operator only. Below is my solution
def sumTest(list_Of_Integers):
return sum(list(filter(lambda x: x%2 == 0, list_Of_Integers)))
I want to ask if there is any better solution, like without using the built-in sum() of python.
Thanks

As stated above in the comments, a more pythonic way of doing this is to use a list comprehension:
def sumTest(list_Of_Integers):
return sum([x for x in list_Of_Integers where x % 2 == 0])
As #UloPe states, however, this sounds very much like a homework question, in which case a more recursive method may be expected (rather than using the sum() function):
def sumTest2(xs):
if len(xs) == 0:
return 0
total = xs[0] if xs[0] % 2 == 0 else 0
return total + sumTest2(xs[1:])
This will generate a function stack dependent on the size of the list.
If you want to generate a shallower stack, then you can do the following:
def sumTest3(xs):
if len(xs) == 0:
return 0
midpoint = len(xs) / 2
total = xs[midpoint] if xs[midpoint] % 2 == 0 else 0
return sumTest3(xs[:midpoint]) + total + sumTest3(xs[midpoint + 1:])
The stack depth of this version will be log(size of list)

Related

Python how to calculate average of range list?

Could somebody tell me what I am doing wrong?
I am gotting error Vidurkis = sum(B)/len(B)
TypeError: 'int' object is not callable
A = int(input('Betkoks skaicius'))
if A == 0:
print('Ačiū')
if A <= 10 and A>=-10:
if A<0:
print('Neigiamas vienženklis')
if A>0:
print('Teigiamas vienženklis')
else:
print('| {:^20} |'.format('Autorius: '))
for r in range(10,A,1):
Vidurkis = sum(r)/len(r)
print(Vidurkis)
after
sum = 0
sum is no longer the built-in sum function! You would have to rename that variable. The real error is, however, that you are applying functions that take iterables as arguments to integers (Your loop variable B is an int while sum and len would expect a list or similar). The following would suffice:
r = range(10, A, 1) # == range(10, A)
Vidurkis = sum(r)/len(r) # only works for A > 10, otherwise ZeroDivisionError

Need help writing a function which returns a dictionary with the keys as recursive digit sums

So I have written a function which calculates the sum of the digits when a number is input to the function. Now I am trying to write another function which would return a dictionary with the values from my digitsum function as the keys and the values would be how many times the count of that specific digitsum has occurred. Any ideas on how to go about writing the second function?
def digitsum(x):
if x < 10:
return x
else:
return (x%10) + digitsum(x//10)
def digitsumdictionary(lnum=0, hnum=100):
L =[digitsum(num) for num in range(100)]
counter = Counter(L).items()
return counter
Digitsum function is called depending on the length of the number.
You can simply find it by using len(list(str(num))). But if you want to count as the function calls itself, Then try this,
def digitsum(x, count=1):
if x < 10:
return { x : count }
else:
return {(x%10) + int(list(digitsum(x//10 , count+1).keys())[0]) : int(list(digitsum(x//10 , count+1).values())[0])}
Setting the count to 1 or 0 initially, includes or excludes the first call respectively.
The below code returns a list of dictionaries of the desired output.
[digitsum(i) for i in range(10)]

find the first occurrence of a number greater than k in a sorted array

For the given sorted list,the program should return the index of the number in the list which is greater than the number which is given as input.
Now when i run code and check if it is working i am getting 2 outputs. One is the value and other output is None.
If say i gave a input of 3 for the below code.The expected output is index of 20 i.e., 1 instead i am getting 1 followed by None.
If i give any value that is greater than the one present in the list i am getting correct output i.e., "The entered number is greater than the numbers in the list"
num_to_find = int(input("Enter the number to be found"))
a=[2,20,30]
def occur1(a,num_to_find):
j = i = 0
while j==0:
if a[len(a)-1] > num_to_find:
if num_to_find < a[i]:
j=1
print(i)
break
else:
i = i + 1
else:
ret_state = "The entered number is greater than the numbers in the list"
return ret_state
print(occur1(a,num_to_find))
This code is difficult to reason about due to extra variables, poor variable names (j is typically used as an index, not a bool flag), usage of break, nested conditionals and side effect. It's also inefficient because it needs to visit each element in the list in the worst case scenario and fails to take advantage of the sorted nature of the list to the fullest. However, it appears working.
Your first misunderstanding is likely that print(i) is printing the index of the next largest element rather than the element itself. In your example call of occur1([2, 20, 30], 3)), 1 is where 20 lives in the array.
Secondly, once the found element is printed, the function returns None after it breaks from the loop, and print dutifully prints None. Hopefully this explains your output--you can use return a[i] in place of break to fix your immediate problem and meet your expectations.
Having said that, Python has a builtin module for this: bisect. Here's an example:
from bisect import bisect_right
a = [1, 2, 5, 6, 8, 9, 15]
index_of_next_largest = bisect_right(a, 6)
print(a[index_of_next_largest]) # => 8
If the next number greater than k is out of bounds, you can try/except that or use a conditional to report the failure as you see fit. This function takes advantage of the fact that the list is sorted using a binary search algorithm, which cuts the search space in half on every step. The time complexity is O(log(n)), which is very fast.
If you do wish to stick with a linear algorithm similar to your solution, you can simplify your logic to:
def occur1(a, num_to_find):
for n in a:
if n > num_to_find:
return n
# test it...
a = [2, 5, 10]
for i in range(11):
print(i, " -> ", occur1(a, i))
Output:
0 -> 2
1 -> 2
2 -> 5
3 -> 5
4 -> 5
5 -> 10
6 -> 10
7 -> 10
8 -> 10
9 -> 10
10 -> None
Or, if you want the index of the next largest number:
def occur1(a, num_to_find):
for i, n in enumerate(a):
if n > num_to_find:
return i
But I want to stress that the binary search is, by every measure, far superior to the linear search. For a list of a billion elements, the binary search will make about 20 comparisons in the worst case where the linear version will make a billion comparisons. The only reason not to use it is if the list can't be guaranteed to be pre-sorted, which isn't the case here.
To make this more concrete, you can play with this program (but use the builtin module in practice):
import random
def bisect_right(a, target, lo=0, hi=None, cmps=0):
if hi is None:
hi = len(a)
mid = (hi - lo) // 2 + lo
cmps += 1
if lo <= hi and mid < len(a):
if a[mid] < target:
return bisect_right(a, target, mid + 1, hi, cmps)
elif a[mid] > target:
return bisect_right(a, target, lo, mid - 1, cmps)
else:
return cmps, mid + 1
return cmps, mid + 1
def linear_search(a, target, cmps=0):
for i, n in enumerate(a):
cmps += 1
if n > target:
return cmps, i
return cmps, i
if __name__ == "__main__":
random.seed(42)
trials = 10**3
list_size = 10**4
binary_search_cmps = 0
linear_search_cmps = 0
for n in range(trials):
test_list = sorted([random.randint(0, list_size) for _ in range(list_size)])
test_target = random.randint(0, list_size)
res = bisect_right(test_list, test_target)[0]
binary_search_cmps += res
linear_search_cmps += linear_search(test_list, test_target)[0]
binary_search_avg = binary_search_cmps / trials
linear_search_avg = linear_search_cmps / trials
s = "%s search made %d comparisons across \n%d searches on random lists of %d elements\n(found the element in an average of %d comparisons\nper search)\n"
print(s % ("binary", binary_search_cmps, trials, list_size, binary_search_avg))
print(s % ("linear", linear_search_cmps, trials, list_size, linear_search_avg))
Output:
binary search made 12820 comparisons across
1000 searches on random lists of 10000 elements
(found the element in an average of 12 comparisons
per search)
linear search made 5013525 comparisons across
1000 searches on random lists of 10000 elements
(found the element in an average of 5013 comparisons
per search)
The more elements you add, the worse the situation looks for the linear search.
I would do something along the lines of:
num_to_find = int(input("Enter the number to be found"))
a=[2,20,30]
def occur1(a, num_to_find):
for i in a:
if not i <= num_to_find:
return a.index(i)
return "The entered number is greater than the numbers in the list"
print(occur1(a, num_to_find))
Which gives the output of 1 (when inputting 3).
The reason yours gives you 2 outputs, is because you have 2 print statements inside your code.

Python 3, any better/cleaner way to write these functions that use for loops?

I'm trying to write code in the most simplest and cleanest way possible. I've found a few ways to shorten and simplify my code through functions that I've never seen before or through using other methods. I'd like to expand my knowledge on writing code using various (but simple) methods, and also expand my function 'vocabulary'.
Here are the functions:
1. Perfect number:
If a number's divisors' sum is equal to the number itself, it is a perfect number. We dont count the number itself as a divisor. E.g. 6's divisors are 1, 2, 3. The sum of the divisors is 6. Therefore 6 is a perfect number.
def perfect_number(num):
if type(num) != int or num < 0:
return None
divisors = []
total = 0
for x in range(num):
if num % (x+1) == 0:
if num != x+1:
divisors += [x+1]
for x in divisors:
total += x
if total == num:
return True
return False
2. Pattern:
A function that takes a positive integer and prints a pattern as follows:
pattern(1): '#-'
pattern(2): '#-#--'
pattern(5): '#-#--#---#----#-----'
def pattern(num):
if type(num) != int or num < 0:
return None
output = ''
for x in range(num):
output += '#'+('-'*(x+1))
return output
3. Reversed Numbers:
A function that takes 2 integers. It goes through every number in the range between those 2 numbers, if one of those numbers is a palindrome (the same thing backwards e.g. 151 is a 'palindrome'), it will increase a variable by 1. That variable is then returned.
invert_number(num) returns the opposite of num as an integer.
def reversed_numbers(low, high):
output = 0
for x in range(low,high+1):
if invert_number(x) == x:
output += 1
return output
It is assumed that low is lower than high.
If I broke a rule or if this doesnt fit here, please tell me where I can post it/how I can improve. Thanks :)

power (a, n) in PYTHON

POwer in Python. How to write code to display a ^ n using funсtion?
why doesn't this code working?
a = int(input())
n = int(input())
def power(a, n):
for i in range (n):
a=1
a *= n
print(power (a, n))
Few errors:
Changing a will lose your power parameter, use result (or something else).
Move setting result = 1 outside your loop to do so once.
Multiply by a not by n.
Use return to return a value from the function
def power(a, n):
result = 1 # 1 + 2
for _ in range (n):
result *= a # 3
return result # 4
Style notes:
Setting/mutating a parameter is considered bad practice (unless explicitly needed), even if it is immutable as is here.
If you're not going to use the loop variable, you can let the reader know by using the conventional _ to indicate it (_ is a legal variable name, but it is conventional to use it when not needing the variable).
Tip: you can simple use a**n
It doesn't work because your function doesn't return the end value. Add return a to the end of the function.
ALSO:
That is not how a to the power of n is is calculated.
A proper solution:
def power(a,n):
pow_a = a
if n is 0:
return 1
for _ in range(n-1): # Substracting 1 from the input variable n
pow_a *= a # because n==2 means a*a already.
return pow_a
and if you want to be really cool, recursion is the way:
def power_recursive(a,n):
if n is 0:
return 1
elif n is 1:
return a
else:
a *= power_recursive(a,n-1)
return a

Resources