Grails performing time consuming tasks in controller vs another thread - multithreading

In Grails I have a very time consuming task that simply reads about a 1000 csv files each containing one word per line. Then it reads each file and moves the word per line to a database.
What would be the difference in memory consumed if I perform this task in controller (main thread) or in another thread spawned in controller?
I have already faced out of memory errors due to which jvm totally quit the live website and I had to restart Tomcat.
Could it be due to time consuming task in controller thread(hence more memory consumed)?
P.S. I am more interested in finding the difference in memory consumed in controller thread and another thread created in controller.

It depends on your overall requirements, load (how often you do this), architecture, available software and hardware.
First of all, this is usually a task for ETL (Extract Transform Load) systems. If you can't afford one (or your boss is strictly against it) you can use several other approaches to offload the controller.
dedicated server - install this DB load onto another box. Define communication channels. Asynchronously get notified when the load finishes and pass this info onto the user.
In process processing. This is when you just spawn another thread (or threads) to do the heavy lifting. GPars could come to the rescue here.
You could also use the Grails built-in async features as specified here
Back to your original question. I wouldn't even think about loading 100s of CSV in a controller. If I was to implement this, I'd certainly go for an ETL as it's most suitable for this kind of tasks.

Related

Is it a good practice to use multithreading to handle requests in bulk in a micro services architecture systems?

Requirement:
I have to design a micro service which performs search query in a sql db multiple times(say 7 calls) along with multiple third party http calls(say 8 calls) in sequential and interleaved manner to complete an order, by saying sequential I mean before next call of DB or third party previous call to DB or third party must be completed as the result of these calls will be used in further third party or search operations in DB.
Resources:
I) CPU: 4 cores(per instance)
II) RAM: 4 GB(per instance)
III) It can be auto scaled upto at max of 4 pods or instances.
IV) Deployment: Open Shift (Own cloud architecture)
V) Framework: Spring Boot
My Solution:
I've created a fixed thread pool of 5 threads(Size of blocking queue is not configured, also there are another 20 fixed pool threads running apart from these 5 threads for creating orders of multiple types i.e. in total there are 25 threads running per instance) using thread pool executor of Java. So when multiple requests are sent to this micro service I keep submitting the job and the JVM by using some scheduling algorithms schedules these jobs and complete the jobs.
Problem:
I'm not able to achieve the expected through put, using above approach the micro service is able to achieve only 3 to 5 tps or orders per second which is very low. Sometimes it also happens that tomcat gets choked and we have to restart services to bring back the system in responsive situation.
Observation:
I've observed that even when orders are processed very slowly by the thread pool executor if I call orders api through jmeter at the same time when things are going slow, these kind of requests which are directly landing on the controller layer are processed faster than the request getting processed by thread pool executor.
My Questions
I) What changes I should make at the architectural level to make through put upto 50
to 100 tps.
II) What changes should be done so that even if traffic on this service increases in
future then the service can either be auto scaled or justification to increase
hardware resources can be given easily.
III) Is this the way tech giants(Amazon, Paypal) solve scaling problems like these
using multithreading to optimise performance of their code.
You can assume that third parties are responding as expected and query optimisation is already done with proper indexing.
Tomcat already has a very robust thread pooling algorithm. Making your own thread pool is likely causing deadlocks and slowing things down. The java threading model is non-trivial, and you likely are causing more problems than you are solving. This is further evidenced by the fact that you are getting better performance relying on Tomcat's scheduling when you hit the controller directly.
High-volume services generally solve problems like this by scaling wide, keeping things as stateless as possible. This allows you to allocate many small servers to solve the solution much more efficiently than a single large server.
Debugging multi-threaded executions is not for the faint of heart. I would highly recommend you simplify things as much as possible. The most important bit about threading is to avoid mutable state. Mutable state is the bane of shared executions, moving memory around and forcing reads through to main memory can be very expensive, often costing far more than savings due to threading.
Finally, the way you are describing your application, it's all I/O bound anyway. Why are you bothering with threading when it's likely I/O that's slowing it down?

What is the meaning of I/O intensive in Node.js

I was learning Node.js and also found out that Node.js is best to be used with I/O intensive tasks which confused me a bit. So, after some research I found this statement: "An application that reads and/or writes a large amount of data". So, does it mean that Node.js is best to be used with data, that is, read big data, take necessary data from that and send back to client?
A nodejs application can be architectured just fine to include non-I/O things and is not just suited for big data applications (in fact big data has nothing to do with it at all).
A default, simple implementation of Node.js performs best when your application is not CPU intensive and instead spends most of its time doing I/O (input/output) tasks such as reading/writing to a database, read/writing from files, reading/sending network data and so on. It's not about big data, it's about what does the server spend most of its time doing.
Surprisingly enough (to some) since a web server's primary job is responding to http requests which are usually requests for data, most web servers spend most of their time fetching things, reading and writing things and sending things which are all I/O tasks. In the node.js design, all these I/O tasks happen asynchronously in a non-blocking fashion and they use events to signal when those operations complete. This is where the phrase "event-driven design" comes from when describing node.js. It so happens that this makes node.js very efficient at handling things that involve primarily I/O. This is what a simple implementation of node.js does best. And, it generally does it better than a purely threaded server design that devotes an OS thread to every currently in-flight I/O operation (the original design for many server frameworks).
If you do have CPU intensive things (major calculations, image processing, heavy crypto operations, etc...) and you do them very often or they take very long, then you will be best served if you put those tasks in a Worker Thread or in another process and communicate back and forth between the main process in node.js and this worker to get that CPU-intensive work done. It used to be that node.js didn't have Worker Threads which made this task a little more complicated where you often had to use one or more additional processes (either via clustering or additional dedicated processes) in order to handle this CPU-intensive work, but now you can use Worker Threads which can be a bit more convenient.
For example, I have a server task that requires a very heavy amount of crypto (performing a billion crypto operations). If I put that in the main node.js thread, that essentially blocks the event loop so my server can't process other requests while that heavy duty crypto operation is running which would ruin the responsiveness of my server.
But, I was able to move the crypto work to a worker thread (actually to several worker threads) and then can crunch away on the crypto while my main thread stays nice and lively to handle other, unrelated incoming requests in a timely fashion.
First of all, Big Data has nothing to do with Node.js.
I/O intensive means that the given task often waits for I/O. The best examples for these are file operations, networking.
If the processor has to regularly wait for data to arrive, the task is said to be I/O intensive.
Node.js's asynchronous nature however makes it really good at I/O intensive tasks, as it can keep doing other work while it waits for the data to arrive asynchronously.
For example, if you have 10 clients connected to the server and one of the clients requests for a data or task that is heavy to process, my server should not get stuck or wait until this task is finished as it will cause greater response time to other 9 clients or bad user experience. Rather, server should allow the other 9 clients to request data or task from the server, and when the respective tasks get finished, response should be sent back to clients.
PS: You can study about Event loop in Node.js
What Node.js is great at is serving as the middle layer between clients and data sources, i.e. the inputs and outputs.
The reason Node.js is great at this is in the non-blocking event-driven approach it takes.
For example, when you make a request to a Node.js app that asks for some data from a database, Node.js will request that data and immediately return to other requests without being blocked by the database request.
Once the database sends the data back, Node.js triggers the callback (or resolves the promise) with that data and continues onwards.
There's no race condition between these input and output events because their synchronization is done in a single threaded mechanism called the Event Loop. Only one event gets processed at a time.
We can think of the Event Loop as a single-seat rollercoaster ride in an amusement park that has many lines of people waiting to go on the ride, one by one. When you get to go depends on when you got in a line, how important you are or if a friend saved you a spot but nevertheless only one person at a time will be able to partake.
This non-blocking event-driven approach allows Node.js to very efficiently react to input and output events and process many read/write operations because it's not really doing much processing, the CPU work is quite low. It's just serving as the middle layer between you and the data.
On the other hand, if these events lead to some intense CPU operations, Node.js used to perform quite poorly because the Event Loop can process only one event at a time.
To use the rollercoaster analogy from above, a CPU-intensive task would be as if one person is taking a really long ride while all others have to wait for them to be done.
Newer versions of Node.js did get some tools to allow it do to more than 1 thing at time (parallelism) by using workers. The trick here is that every pool of workers has its own Event Loop which allows applications to move the intense work into a different thread and run it in parallel with the rest of the application. Do note that this will only actually help if you run on a machine with more than 1 core. If your machine has 1 core, no matter what tool you use, you're gonna have a bad time because nothing can actually be done in parallel on a single core machine.
In case of Intensive I/O tasks Majority of the time is spent waiting for network, filesystem and perhaps database I/O to complete. Increasing hard disk speed or network connection improves the overall performance.
In its most basic form Node.js is best suited for this type of computing. All I/O in Node.js is non-blocking and it allows other requests to be served while waiting for a particular read or write to complete.

Nodejs scaling and prioritising functions

We have a node application running on the server that gets hit a lot and has to compile a zip file for download. That works well so far but I am nervous we will hit a point where performance becomes an issue.
(The application is currently running with forever on a ubuntu 14.04 machine.)
I am now asked to add all kinds of new features to the app which are more secondary and should not decrease the performance of the main function (the zip download). It would be OK to have those additional features fail in case the app is hit too many times in favour of the main zipping process.
What is the best practise here. Creating a REST API for the secondary features and put everything into a waiting list? It surely isn't enough to just create a second app and spawn a new process each time the main zip process finishes? How Can I ensure the most redundancy? I'm not talking about a multi-core cluster setup or load-balancing on NGINX, but a smart way of prioritising application functions on application level.
I hope this is not too broad. Cheers
First off, everything should be using async I/O, no synchronous I/O anywhere in your server. That's the #1 rule for building a scalable node.js server.
Second off, the highest priority tasks that have any significant CPU usage should be allowed to use multiple cores. If, as you say, the highest priority tasks is creating the zip download, then you should makes sure that that operation can take advantage of multiple cores.
You can accomplish that either with clustering (your whole server runs multiple instances that can each be on a separate core) or by creating a set of processes specifically for creating the zip files and then create a work queue in the main process that feeds these other processes work and gets the result back from them. This second option is likely a bit more complex to code than clustering, but it does prioritize the zip file creation so only one core is serving other server needs and all other cores of working on zip file creation. Clustering shares all cores with all server responsibilities.
At the pure server application level, your server can maintain a work queue of all incoming work to be done no matter what kind and it can prioritize that work. For example, if an API call comes in and there are already N zip file requests in the queue, you could immediately fail the API call to keep it from building up on the server. I don't think I'd personally recommend that solution unless your API calls are really heavy operations because it's very hard for a developer to reliably use your API if it regularly just fails on them. They would generally find it better for the API to just be slow sometimes than to regularly fail.
You might not even have to use a queue, you could just use a counter to keep track of how many ZIP file requests were "in process", but you'd have to make absolutely sure the counter was accurate in all cases. If there was ever an accumulating error in the counter, then you might just end up failing all API requests until your server was restarted.

Thread inside Application vs. Server process

I have a site which sometimes takes particularly long to process a request (and that's not a defect). 99% of the time it's pretty quick because it almost doesn't do any processing.
I want to show a message that says "Loading" when the site takes long to process the request. My site uses mod_wsgi and Apache. The way I see it, I would respond saying 'Loading' before completing the processing and do one of two things right before:
-spawn a (daemon) thread to take care of the processing.
-communicate through socket with other process and tell it to take care of the processing (most likely send request to http://localhost:8080/do_processing).
What are the pros and cons of one approach vs the other?
Using a separate process is better. It does not have to be hard at all as suggested in another answer as you can use an existing system for doing exactly that such as Celery (http://celeryproject.org/). Relying on in process threads is not necessarily a good idea unless you are going to implement an internal job queueing system of your own to prevent blowing out of number of threads. Also, in a multiprocess server configuration you cant be guaranteed a request comes back to the same process and so not easy to get status of a running operation. Finally, the web server processes could get killed off and thus your background task could also be killed before it finishes. You would need to have a mechanism for holding state which can survive such an event if that was important. Far easier to use something like Celery.
The process route requires quite a bit of a system processing. Creation of a separate process is relatively expensive and slow. However if your process crashes it doesn't affect your main governing process (you will receive the exit status code and will have an opportunity to respawn a new working process). You will also need some sort of InterProcessCommunication layer (can be a socket, pipe, shared memory, etc...) which is adds to complexity if your project.
Threads are lightweight and cheap. All you need to do is to manage concurrent access to shared resources. So it really depends on the task you have in mind. Threads probably will be more likely the appropriate way to implement your task.

What Use are Threads Outside of Parallel Problems on MultiCore Systems?

Threads make the design, implementation and debugging of a program significantly more difficult.
Yet many people seem to think that every task in a program that can be threaded should be threaded, even on a single core system.
I can understand threading something like an MPEG2 decoder that's going to run on a multicore cpu ( which I've done ), but what can justify the significant development costs threading entails when you're talking about a single core system or even a multicore system if your task doesn't gain significant performance from a parallel implementation?
Or more succinctly, what kinds of non-performance related problems justify threading?
Edit
Well I just ran across one instance that's not CPU limited but threads make a big difference:
TCP, HTTP and the Multi-Threading Sweet Spot
Multiple threads are pretty useful when trying to max out your bandwidth to another peer over a high latency network connection. Non-blocking I/O would use significantly less local CPU resources, but would be much more difficult to design and implement.
Performing a CPU intensive task without blocking the user interface, for example.
Any application in which you may be waiting around for a resource (for example, blocking I/O from network sockets or disk devices) can benefit from threading.
In that case the thread blocking on the slow operation can be put to sleep while other threads continue to run (including, under some operating systems, the GUI thread which, if the OS cannot contact it for a while, will offer the use the chance to destroy it, thinking it's deadlocked somehow).
So it's not just for multi-core machines at all.
An interesting example is a webserver - you need to be able to handle multiple incoming connections that have nothing to do with each other.
what kinds of non-performance related
problems justify threading?
Web applications are the classic example. Each user request is conceptually a new thread. Nothing to do with performance, it's just a natural fit for the design.
Blocking code is usually much simpler to write and easier to read (and therefore maintain) than non-blocking code. Yet, using blocking code limits you to a single execution path and also locks out things like user interface (mentioned) and other IO ports. Threading is an elegant solution in these cases.
Another case when multithreading is to be considered is when you have several near-synchronous IO channels that should be managed: using multiple threads (and usually a local message queue) allows for much clearer code.
Here are a couple of specific and simple scenarios where I have launched threads...
A long running report request by the user. When the report is submitted, it is placed in a queue to be processed by a separate thread. The user can then go on within the application and check back later to see the status of their report, they aren't left with a "Processing..." page or icon.
A thread that iterates cache storage, removing data that has expired or no longer needed. The thread's job within the application is independent of any processing for a specific user, but part of the overall application run-time maintenance.
although, not specifically a threading scenario, logging within our web site is handed off to a parallel process, so the throughput of the web site isn't hindered by the time it takes to record log data.
I agree that threading just for threadings sake isn't a good idea and it can introduce problems within your application if isn't done properly, but it is an extremely useful tool for solving some problems.
Whenever you need to call some external component (be it a database query, a 3. party library, an operating system primitive etc.) that only provides a synchronous/blocking interface or using the asynchronous interface not worth the extra trouble and pain - and you also need some form of concurrency - e.g. serving multiple clients in a server or keep the GUI still responsive.
Well, how do you know if you're app is going to run on a multi-core system or not?
Beyond that, there are a lot of processes that take up time, but don't require the CPU. Such as writing to a disk or networking. Who wants to push a button in a GUI and then have to sit there and wait for a network connection. Even on a single core machine, having a separate IO thread greatly improves user experience. You always at least want a separate thread for the UI.
Yet many people seem to think that
every task in a program that can be
threaded should be threaded, even on a
single core system.
"Many people"... Who?
Also from my experience many many programs that should be multithreaded aren't (especially games.. I have an i7 and yet most games still use only 1 of my cores), so I'm not sure what you're talking about. Definitely programs like calc.exe are not multithread (or, if they are, 1 thread does 99% of the work).
Performing a CPU intensive task
without blocking the user interface,
for example.
Yes, this is true but this is fairly easy to implement and it's not what the OP is referring to (since, in this case, 1 thread does almost all the work and you only need very few mutexes)

Resources