I'm finding it difficult to understand why/how the worst and average case for searching for a key in an array/list using binary search is O(log(n)).
log(1,000,000) is only 6. log(1,000,000,000) is only 9 - I get that, but I don't understand the explanation. If one did not test it, how do we know that the avg/worst case is actually log(n)?
I hope you guys understand what I'm trying to say. If not, please let me know and I'll try to explain it differently.
Worst case
Every time the binary search code makes a decision, it eliminates half of the remaining elements from consideration. So you're dividing the number of elements by 2 with each decision.
How many times can you divide by 2 before you are down to only a single element? If n is the starting number of elements and x is the number of times you divide by 2, we can write this as:
n / (2 * 2 * 2 * ... * 2) = 1 [the '2' is repeated x times]
or, equivalently,
n / 2^x = 1
or, equivalently,
n = 2^x
So log base 2 of n gives you x, which is the number of decisions being made.
Finally, you might ask, if I used log base 2, why is it also OK to write it as log base 10, as you have done? The base does not matter because the difference is only a constant factor which is "ignored" by Big O notation.
Average case
I see that you also asked about the average case. Consider:
There is only one element in the array that can be found on the first try.
There are only two elements that can be found on the second try. (Because after the first try, we chose either the right half or the left half.)
There are only four elements that can be found on the third try.
You can see the pattern: 1, 2, 4, 8, ... , n/2. To express the same pattern going in the other direction:
Half the elements take the maximum number of decisions to find.
A quarter of the elements take one fewer decision to find.
etc.
Since half of the elements take the maximum amount of time, it doesn't matter how much less time the other elements take. We could assume that all elements take the maximum amount of time, and even if half of them actually take 0 time, our assumption would not be more than double whatever the true average is. We can ignore "double" since it is a constant factor. So the average case is the same as the worst case, as far as Big O notation is concerned.
For binary search, the array should be arranged in ascending or descending order.
In each step, the algorithm compares the search key value with the key value of the middle element of the array.
If the keys match, then a matching element has been found and its index, or position, is returned.
Otherwise, if the search key is less than the middle element's key, then the algorithm repeats its action on the sub-array to the left of the middle element.
Or, if the search key is greater,then the algorithm repeats its action on the sub-array to the right.
If the remaining array to be searched is empty, then the key cannot be found in the array and a special "not found" indication is returned.
So, a binary search is a dichotomic divide and conquer search algorithm. Thereby it takes logarithmic time for performing the search operation as the elements are reduced by half in each of the iteration.
For sorted lists which we can do a binary search, each "decision" made by the binary search compares your key to the middle element, if greater it takes the right half of the list, if less it will take the left half of the list (if it's a match it will return the element at that position) you effectively reduce your list by half for every decision yielding O(logn).
Binary search however, only works for sorted lists. For un-sorted lists you can do a straight search starting with the first element yielding a complexity of O(n).
O(logn) < O(n)
Although it entirely depends on how many searches you'll be doing, your inputs, etc what your best approach would be.
For Binary search the prerequisite is a sorted array as input.
• As the list is sorted:
• Certainly we don't have to check every word in the dictionary to look up a word.
• A basic strategy is to repeatedly halve our search range until we find the value.
• For example, look for 5 in the list of 9 #s below.v = 1 1 3 5 8 10 18 33 42
• We would first start in the middle: 8
• Since 5<8, we know we can look at just the first half: 1 1 3 5
• Looking at the middle # again, narrow down to 3 5
• Then we stop when we're down to one #: 5
How many comparison is needed: 4 =log(base 2)(9-1)=O(log(base2)n)
int binary_search (vector<int> v, int val) {
int from = 0;
int to = v.size()-1;
int mid;
while (from <= to) {
mid = (from+to)/2;
if (val == v[mid])
return mid;
else if (val > v[mid])
from = mid+1;
else
to = mid-1;
}
return -1;
}
Related
I'm trying to do dynamic programming backtracking of maximum sum of non adjacent elements to construct the optimal solution to get the max sum.
Background:
Say if input list is [1,2,3,4,5]
The memoization should be [1,2,4,6,9]
And my maximum sum is 9, right?
My solution:
I find the first occurence of the max sum in memo (as we may not choose the last item) [this is O(N)]
Then I find the previous item chosen by using this formula:
max_sum -= a_list[index]
As in this example, 9 - 5 = 4, which 4 is on index 2, we can say that the previous item chosen is "3" which is also on the index 2 in the input list.
I find the first occurence of 4 which is on index 2 (I find the first occurrence because of the same concept in step 1 as we may have not chosen that item in some cases where there are multiple same amounts together) [Also O(N) but...]
The issue:
The third step of my solution is done in a while loop, let's say the non adjacent constraint is 1, the max amount we have to backtrack when the length of list is 5 is 3 times, approx N//2 times.
But the 3rd step, uses Python's index function to find the first occurence of the previous_sum [which is O(N)] memo.index(that_previous_sum)
So the total time complexity is about O(N//2 * N)
Which is O(N^2) !!!
Am I correct on the time complexity? Or am I wrong? Is there a more efficient way to backtrack the memoization list?
P.S. Sorry for the formatting if I done it wrong, thanks!
Solved:
I looped from behind checking if the item in front is same or not
If it's same, means it's not first occurrence. If not, it's first occurrence.
Tada! No Python's index function to find from the first index! We find it now from the back
So the total time complexity is about O(N//2 * N)
Now O(N//2 + 1), which is O(N).
A string is given to you and it contains characters consisting of only 3 characters. Say, x y z.
There will be million queries given to you.
Query format: x z i j
Now in this we need to find all possible different substrings which begins with x and ends in z. i and j denotes the lower and upper bound of the range where the substring must lie. It should not cross this.
My Logic:-
Read the string. Have 3 arrays which will store the count of x y z respectively, for i=0 till strlen
Store the indexes of each characters separately in 3 more arrays. xlocation[], ylocation[], zlocation[]
Now, accordingly to the query, (a b i j) find all the indices of b within the range i and j.
Calculate the answer, for each index of b and sum it to get the result.
Is it possible to pre-process this string before the query? So, like that it takes O(1) time to answer the query.
As the others suggested, you can do this with a divide and conquer algorithm.
Optimal substructure:
If we are given a left half of the string and a right half and we know how many substrings there are in the left half and how many there are in the right half then we can add the two numbers together. We will be undercounting by all the strings that begin in the left and end in the right. This is simply the number of x's in the left substring multiplied by the number of z's in the right substring.
Therefore we can use a recursive algorithm.
This would be a problem however if we tried to solve for everything single i and j combination as the bottom level subproblems would be solved many many times.
You should look into implementing this with a dynamic programming algorithm keeping track of substrings in range i,j, x's in range i,j, and z's in range i,j.
I have n strings, each of length n. I wish to sort them in ascending order.
The best algorithm I can think of is n^2 log n, which is quick sort. (Comparing two strings takes O(n) time). The challenge is to do it in O(n^2) time. How can I do it?
Also, radix sort methods are not permitted as you do not know the number of letters in the alphabet before hand.
Assume any letter is a to z.
Since no requirement for in-place sorting, create an array of linked list with length 26:
List[] sorted= new List[26]; // here each element is a list, where you can append
For a letter in that string, its sorted position is the difference of ascii: x-'a'.
For example, position for 'c' is 2, which will be put to position as
sorted[2].add('c')
That way, sort one string only take n.
So sort all strings takes n^2.
For example, if you have "zdcbacdca".
z goes to sorted['z'-'a'].add('z'),
d goes to sorted['d'-'a'].add('d'),
....
After sort, one possible result looks like
0 1 2 3 ... 25 <br/>
a b c d ... z <br/>
a b c <br/>
c
Note: the assumption of letter collection decides the length of sorted array.
For small numbers of strings a regular comparison sort will probably be faster than a radix sort here, since radix sort takes time proportional to the number of bits required to store each character. For a 2-byte Unicode encoding, and making some (admittedly dubious) assumptions about equal constant factors, radix sort will only be faster if log2(n) > 16, i.e. when sorting more than about 65,000 strings.
One thing I haven't seen mentioned yet is the fact that a comparison sort of strings can be enhanced by exploiting known common prefixes.
Suppose our strings are S[0], S[1], ..., S[n-1]. Let's consider augmenting mergesort with a Longest Common Prefix (LCP) table. First, instead of moving entire strings around in memory, we will just manipulate lists of indices into a fixed table of strings.
Whenever we merge two sorted lists of string indices X[0], ..., X[k-1] and Y[0], ..., Y[k-1] to produce Z[0], ..., Z[2k-1], we will also be given 2 LCP tables (LCPX[0], ..., LCPX[k-1] for X and LCPY[0], ..., LCPY[k-1] for Y), and we need to produce LCPZ[0], ..., LCPZ[2k-1] too. LCPX[i] gives the length of the longest prefix of X[i] that is also a prefix of X[i-1], and similarly for LCPY and LCPZ.
The first comparison, between S[X[0]] and S[Y[0]], cannot use LCP information and we need a full O(n) character comparisons to determine the outcome. But after that, things speed up.
During this first comparison, between S[X[0]] and S[Y[0]], we can also compute the length of their LCP -- call that L. Set Z[0] to whichever of S[X[0]] and S[Y[0]] compared smaller, and set LCPZ[0] = 0. We will maintain in L the length of the LCP of the most recent comparison. We will also record in M the length of the LCP that the last "comparison loser" shares with the next string from its block: that is, if the most recent comparison, between two strings S[X[i]] and S[Y[j]], determined that S[X[i]] was smaller, then M = LCPX[i+1], otherwise M = LCPY[j+1].
The basic idea is: After the first string comparison in any merge step, every remaining string comparison between S[X[i]] and S[Y[j]] can start at the minimum of L and M, instead of at 0. That's because we know that S[X[i]] and S[Y[j]] must agree on at least this many characters at the start, so we don't need to bother comparing them. As larger and larger blocks of sorted strings are formed, adjacent strings in a block will tend to begin with longer common prefixes, and so these LCP values will become larger, eliminating more and more pointless character comparisons.
After each comparison between S[X[i]] and S[Y[j]], the string index of the "loser" is appended to Z as usual. Calculating the corresponding LCPZ value is easy: if the last 2 losers both came from X, take LCPX[i]; if they both came from Y, take LCPY[j]; and if they came from different blocks, take the previous value of L.
In fact, we can do even better. Suppose the last comparison found that S[X[i]] < S[Y[j]], so that X[i] was the string index most recently appended to Z. If M ( = LCPX[i+1]) > L, then we already know that S[X[i+1]] < S[Y[j]] without even doing any comparisons! That's because to get to our current state, we know that S[X[i]] and S[Y[j]] must have first differed at character position L, and it must have been that the character x in this position in S[X[i]] was less than the character y in this position in S[Y[j]], since we concluded that S[X[i]] < S[Y[j]] -- so if S[X[i+1]] shares at least the first L+1 characters with S[X[i]], it must also contain x at position L, and so it must also compare less than S[Y[j]]. (And of course the situation is symmetrical: if the last comparison found that S[Y[j]] < S[X[i]], just swap the names around.)
I don't know whether this will improve the complexity from O(n^2 log n) to something better, but it ought to help.
You can build a Trie, which will cost O(s*n),
Details:
https://stackoverflow.com/a/13109908
Solving it for all cases should not be possible in better that O(N^2 Log N).
However if there are constraints that can relax the string comparison, it can be optimised.
-If the strings have high repetition rate and are from a finite ordered set. You can use ideas from count sort and use a map to store their count. later, sorting just the map keys should suffice. O(NMLogM) where M is the number of unique strings. You can even directly use TreeMap for this purpose.
-If the strings are not random but the suffixes of some super string this can well be done
O(N Log^2N). http://discuss.codechef.com/questions/21385/a-tutorial-on-suffix-arrays
I participated in code jam, I successfully solved small input of The Repeater Challenge but can't seem to figure out approach for multiple strings.
Can any one give the algorithm used for multiple strings. For 2 strings ( small input ) I am comparing strings character by character and doing operations to make them equal. However this approach would time out for large input.
Can some one explain their algorithm they used. I can see solutions of other users but can't figure out what have they done.
I can tell you my solution which worked fine for both small and large inputs.
First, we have to see if there is a solution, you do that by bringing all strings to their "simplest" form. If any of them does not match, there there is no solution.
e.g.
aaabbbc => abc
abbbbbcc => abc
abbcca => abca
If only the first two were given, then a solution would be possible. As soon as the third is thrown into the mix, then it's impossible. The algorithm to do the "simplification" is to parse the string and eliminate any double character you see. As soon as a string does not equal the simplified form of the batch, bail out.
As for actual solution to the problem, i simply converted the strings to a [letter, repeat] format. So for example
qwerty => 1q,1w,1e,1r,1t,1y
qqqwweeertttyy => 3q,2w,3e,1r,3t,2y
(mind you the outputs are internal structures, not actual strings)
Imagine now you have 100 strings, you have already passed the test that there is a solution and you have all strings into the [letter, repeat] representation. Now go through every letter and find the least 'difference' of repetitions you have to do, to reach the same number. So for example
1a, 1a, 1a => 0 diff
1a, 2a, 2a => 1 diff
1a, 3a, 10a => 9 diff (to bring everything to 3)
the way to do this (i'm pretty sure there is a more efficient way) is to go from the min number to the max number and calculate the sum of all diffs. You are not guaranteed that the number will be one of the numbers in the set. For the last example, you would calculate the diff to bring everything to 1 (0,2,9 =11) then for 2 (1,1,8 =10), the for 3 (2,0,7 =9) and so on up to 10 and choose the min again. Strings are limited to 1000 characters so this is an easy calculation. On my moderate laptop, the results were instant.
Repeat the same for every letter of the strings and sum everything up and that is your solution.
This answer gives an example to explain why finding the median number of repeats produces the lowest cost.
Suppose we have values:
1 20 30 40 100
And we are trying to find the value which has shortest total distance to all these values.
We might guess the best answer is 50, with cost |50-1|+|50-20|+|50-30|+|50-40|+|50-100| = 159.
Split this into two sums, left and right, where left is the cost of all numbers to the left of our target, and right is the cost of all numbers to the right.
left = |50-1|+|50-20|+|50-30|+|50-40| = 50-1+50-20+50-30+50-40 = 109
right = |50-100| = 100-50 = 50
cost = left + right = 159
Now consider changing the value by x. Providing x is small enough such that the same numbers are on the left, then the values will change to:
left(x) = |50+x-1|+|50+x-20|+|50+x-30|+|50+x-40| = 109 + 4x
right(x) = |50+x-100| = 50 - x
cost(x) = left(x)+right(x) = 159+3x
So if we set x=-1 we will decrease our cost by 3, therefore the best answer is not 50.
The amount our cost will change if we move is given by difference between the number to our left (4) and the number to our right (1).
Therefore, as long as these are different we can always decrease our cost by moving towards the median.
Therefore the median gives the lowest cost.
If there are an even number of points, such as 1,100 then all numbers between the two middle points will give identical costs, so any of these values can be chosen.
Since Thanasis already explained the solution, I'm providing here my source code in Ruby. It's really short (only 400B) and following his algorithm exactly.
def solve(strs)
form = strs.first.squeeze
strs.map { |str|
return 'Fegla Won' if form != str.squeeze
str.chars.chunk { |c| c }.map { |arr|
arr.last.size
}
}.transpose.map { |row|
Range.new(*row.minmax).map { |n|
row.map { |r|
(r - n).abs
}.reduce :+
}.min
}.reduce :+
end
gets.to_i.times { |i|
result = solve gets.to_i.times.map { gets.chomp }
puts "Case ##{i+1}: #{result}"
}
It uses a method squeeze on strings, which removes all the duplicate characters. This way, you just compare every squeezed line to the reference (variable form). If there's an inconsistency, you just return that Fegla Won.
Next you use a chunk method on char array, which collects all consecutive characters. This way you can count them easily.
Might be a quite stupid question and I'm not sure if it belongs here or to math.
My problem:
I have several elements of type X which have a boolean attribute Y.
To calculate the percentage of elements where Y is true, I count all X where Y is true and divide it by the number of elements.
But I don't want to iterate all the time above all elements to update that percentage-value.
My idea was:
If I had 33% for 3 elements, and am adding a fourth one where Y is true:
(0.33 * 3 + 1) / 4 = 0.4975
Obviously that does not work well because of the 0.33.
Is there any way for getting an accurate solution without iteration or saving the number of items where Y is true?
Keep a count of the total number of elements and of the "true" ones. Global vars, object member variables, whatever. I assume that sometime back when the program is starting, you have zero elements. Every time an element is added, removed, or its boolean attribute changes, increment or decrement those counts as appropriate. You'll never have to iterate over the list (except maybe for testing) but at the cost of every change to the list having to include fiddling with those variables.
Your idea doesn't work because 0.33 does not equal 1/3. It's an approximation. If you take the exact value, you get the right answer:
(1/3 * 3 + 1) / 4 = (1 + 1) / 4 = 1/2
My question is, if you can store the value of 33% without iterating, why not just store the values of 1 and 3 and calculate them? That is, just keep a running total of the number of true values and number of objects. Increment when you get new ones. Calculate on demand. It's not necessary to iterate every time is way.