I installed freebsd to do my school homework. I have to add custom function or cammand to freebsd kernel and recompile kernel.
Is there any good tutorial for this?
should I install free bsd in specific way like kernel developer?
"Commands" have nothing to do with the kernel; they are ordinary userspace programs.
As for function - do you perhaps mean syscall? If so, this should help you: https://wiki.freebsd.org/AddingSyscalls. For homework you can safely ignore things like Capsicum, MAC, auditing, or compatibility.
Related
I have been looking for a linux distribution that is not for embedded systems and does not use many of the GNU utilities found in many popular distributions. I want to develop a (pet project) linux distribution that uses musl-libc, bsd userland, and Plan 9 from user space. Before I start and possibly waste time doing the impossible, is it feasible/practical to use the BSD userland as a replacement for GNU coreutils? If not, what is an alternative?
Your goal appears to be much close to stali project (the only difference is the BSD userland requirement).
http://sta.li/
I don't know much about the stage of this project, but you can get some help in the project mailing-list.
As far as I know, the BSD tools uses a lot of direct syscalls and little usage of the POSIX API. I don't believe that bsd guys had written code using a lot of #ifdefs to get fully compliant programs (but I can be wrong)...
The suckless site ported the plan9 userland to unix (based on plan9port too), it's called 9base (and is available on archlinux repo to install).
I think you'll have the same problem I had in the past trying to assembly a similar distro: Too much effort to get rid of GNU... The base system is easy, but for something useful you'll need a C compiler and then you're out of good alternatives. GCC is gnu and have dozens of gnu dependencies and the sane freebsd gcc port never will work on linux for obvious reasons.
My current try is help finish the ken-c (or 9-cc) port for linux.
Is it true that the Debian system uses FreeBSD kernel and the Redhat system uses GNU kernel. Does it make any difference to use Free BSD kernel or GNU kernel?
Well the comment grew too long so I might as well post an answer. It is quite unclear what you are asking for, since you don't present any specific problem. At first glance this question does not belong to SO. But I assume since posted here you ask about difference from coders point of view.
1st to clear up, the BSD kernel is rather the alternative one like Hurd, so a Debian system can use FreeBSD kernel, it's not default. Actually its status is "official port".
Probably the biggest difference lies in the philosophy the user believes and their peace of mind, alternatively the hood they grew up in. Unless you are a distro developer or work even lower on the system.
Generally as a programmer you work with standard library implementation (libc,libc++,libstdc++ or whatever), they need to follow the standard, and the differences are really small. On debian this is natively provided with gnu toolset. You can assume to work in gnu wonderland. The kernel lies even lower, and you would need to work on really low-level kernel related stuff to notice difference of the kernel itself. Usually you work few layers from it and kernel should pleasantly abstract.
So no need to worry unless you acutally run into trouble.
I would like to generalize a build system to compile on several (somewhat similar) platforms. What is a good method for determining the type of host that the shell script or Makefile is running on. I would like to distinguish between mac and linux, but also different specific distributions of linux (e.g. RHEL, Ubuntu). Cygwin is not important for me, but if you include it in your response I am sure others will find it valuable.
The rationale may include using the host type to fetch and install the correct versions of binary packages when it is more convenient to do so than compile from source. In addition, some commercial software is binary-packaged for specific distros, so part of the motivation is to grab the right binary.
Thanks,
SetJmp
Autotools to the rescue. It has tons of macros that help you do this kind of stuff.
http://www.lrde.epita.fr/~adl/autotools.html
uname -a to distinguish major *nix variants
Not so sure what the best way to distinguish red hat from ubuntu would be - could look for package managing tools and query installed packages, eventually helping you narrow down different debian derivatives, etc. There's probably something more obvious and up front though.
linux variants generally store distro information in /etc/issue.
most kernels will put info in /proc/version
It's not completely straightforward. You can use uname to find out the general parameters but to differentiate between distributions is a harder task. Maybe you should consider using something like autoconf to generalise your build system?
Just in case you're using Qt, there's this really nice set of defines, Q_OS_*, that guide you to the Operating System you're compiling on:
Q_OS_AIX
Q_OS_BSD4
Q_OS_BSDI
Q_OS_CYGWIN
Q_OS_DARWIN
Q_OS_DGUX
Q_OS_DYNIX
Q_OS_FREEBSD
Q_OS_HPUX
Q_OS_HURD
Q_OS_IRIX
Q_OS_LINUX
Q_OS_LYNX
Q_OS_MAC
Q_OS_MSDOS
Q_OS_NETBSD
Q_OS_OS2
Q_OS_OPENBSD
Q_OS_OS2EMX
Q_OS_OSF
...
They are defined in QtGlobal. There are even defines that help you figure out the compiler used Q_CC_* or the target Windowing System Q_WS_*.
But if you're not using Qt and want to go for a generic method, you most likely have to fall back to the Autotools package or CMake.
Determining Linux distributions is pretty tricky, but not hard. You first have to figure out what distributions you care about and then make all kinds of distribution specific file/configuration checks like in this example for the ones you've chosen, since you can't really support all of the myriad of Linux distros available out the. :-)
As for the Mac side i'll let the Mac experts answer, but it shouldn't be that hard, since at least the diversity issue is out of the question.
I wonder if someone managed to compile the Linux kernel with some other compiler than gcc. Or if someone have ever tried? Question may seem to be silly or academic, but it arose when I thought about answers to: Are C++ int operations atomic on the mips architecture
It seems that the atomicity of some operations depends not only on the cpu architecture, but also on used compiler. So, I wonder if in Linux world some compiler other than gcc even exists.
Linux explicitly depends on some gcc extensions, so any other compiler must be compatible with the needed extensions, in that case.
This is not a "no", since it's of course not impossible for a separate compiler vendor/developer to track gcc's extensions, just a data point that might help you search.
At some point tcc would process and run the linux kernel source. SO that would be a yes, I guess.
::Hat tip to ephemient in the comments.::
The LLVM developers are trying to compile it with clang. The meta-bug on compiling the Linux kernel with clang has more details (the dependency tree for that meta-bug shows how little seems to be left).
There have been some efforts (and patches) to compile an early version of the 2.6 kernel with icc.
Yup. I've done this. See [cfe-dev] Clang builds a working Linux Kernel (Boots to RL5 with SMP, networking and X, self hosts).
IBM's compiler was able to do it some Linux versions ago, but I'm not sure about now, nor am I sure of how well IBM optimized the kernel as instructed. All I know is, they got it to build.
As Linux is self hosting (with its own libc) and has been developed from the start with gcc (and gcc cross compilers), its sort of silly to use anything else.
I think mainly, playing nice with preprocessor macros and instructed optimizations is the biggest obstacle (not even getting into a departure from gas), as GNU has basically written the book on the above, and extended it. Beyond that, Linux tunes its optimizations to work with gcc, for instance, don't get caught using 'volatile' in the kernel without a damn good reason. Using inline and actually having the compiler agree is another challenge.
Linus is the first one to call GCC an &*#$ hole, which makes for a better compiler.
This is why we have the great GNU/Linux debate.
Many, many, many years ago, it was actually possible to compile the kernel with g++, and as far as I remember part of the motivation was because C++ had stronger type check, not necessarily to have g++ to produce object files. But as Neil Butterworth have pointed out, Linus is not particular fond of C++, and there is zero chance that this ever will be possible again.
EKOPath 4 Compiler, not now. but probably with some minor patches
https://github.com/path64/repositories
http://www.pathscale.com/ekopath-compiler-suite
I am just now working on compile Linux kernel using Open64 for MIPS archtecture, and some other guys are now just working for make Open64 can build for X86 arch. Now the kernel can partly run, and still have Run fail errors.
However for the atomic problem, at least i have not come up with it. And I do not think it is really a problem.The reasons are:
The Linux kernel have already been a collection of source code, which can successfully build with GCC, so it is only the compiler's problem if it can not build it, or the built kernel runs fail.
If a compiler want to successfully build Linux kernel, it should obide the GNU C Extension, and this extension will give a clear discription of what a atomic operation is, so such a compile only need to generate code according to this extension.
My non-technical guess: The Linux Kernel can't currently (2009) be compiled with any compiler other than the GNU compiler, gcc.
I say this on the basis that I've heard Richard Stallman, with some conviction, say Linux should be called GNU/Linux because the kernel is "only 1 part of the operating system" and I'm guessing he would not be able to say this if the kernel was non-dependant on GNU (e.g. a tonne of embedded devices run a Linux OS without any GNU software).
As I said, just a guess, let me know if I'm wrong...
Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 7 years ago.
Improve this question
I would like to write my own OS, and would like to temporarily jump over the complicated task of writing the kernel and come back to it later by using the Linux kernel in the mean time. However, I would like to provide the OS as closed source for now. What license is the Linux kernel under and is it possible to use it for release with a closed source OS?
Edit: I am not interested in closing the source of the Linux kernel, I would still provide that as open sourced. I am wondering if I could use a closed source OS with an open source kernel.
Further edit: By OS, I mean the system that runs on top of the kernel and is used to launch other programs. I certainly did not mean to include the kernel in the closed source statement.
You can of course write whatever closed-source OS over the Linux kernel that you like provided you are compatible with the licensing of components you link against.
Of course that's likely to include the gnu C library (or some other C library). You may also need some command line utilities which will probably be GPL to do things such as filesystem maintenance, network setup etc. But provided you leave those as their own standalone programs, it should not be a problem.
Anything that you link into the kernel itself (e.g. custom modules, patches) should be released as open source GPL to comply with the kernel's licence.
The Linux kernel is released under the GPLv2 and you can use it as part of a closed-source OS but you have to keep the kernel and all modifications released GPLv2.
Edit: Btw, you may want to use something like OpenSolaris instead. It's much easier to work with, in my opinion (obviously very subjective), and you can keep modifications closed-source if you so choose, so long as you follow the terms of the CDDL.
I think you're going to have to be more specific about what you mean by 'OS'. It's by no means a clear concept. Some would say that the kernel is all of the OS. Others would say that the shell and core utilities such as 'ls' are part of the OS. Others would go as far as to say that standard applications such as Notepad are part of the OS.
IANAL, but I don't believe there's anything to stop you from bundling the Linux kernel with a load of closed-source programs of your own. Take care not to use any GPL library code however (LGPL is OK).
I do question your motives.
It's GPL version 2 and you may certainly not close its source.
You must keep the source open, and any works derived from the code, however, if you use the Kernel, write your own application stack on top of that (pretty much ALL the GNU stuff) then you don't have to open that up.
The GPL says that "derived" works... so if you're writing new code, instead of expanind on, then that's fine. In fact, you could even, for example, use the GNU toolchain, the Linux Kernel, and then have your own system on top of that (or just a DE) that is closed source.
It's when you modify/derive from something that you have to keep it open!
Linux has the GPL (v2) as its licence, which means you have to open source any derivative works.
You may want to use BSD, its license is a lot les restrictive in what you can do with derived works
If the filesystem you use is to be linked into the kernel itself, and if you plan to distribute it to others, the GPL pretty unambiguously requires that the filesystem be GPL'ed as well.
That being said: one way to legally interface Linux with a GPL-incompatible filesystem is via FUSE (filesystem in userspace). This has been used, for example, to run the GPL-incompatible ZFS filesystem on top of Linux. Running a filesystem in userspace does, however, carry a performance penalty that may be significant.
It is GPL. Short answer -- no.
You can always keep any extensions (modules) and/or applications you write closed source, but the kernel itself will need to remain open source.
There's a not-so-obvious aspect of the GPLv2 that you can exploit while testing the system: you only need to release source code to those who have access to the system. The GPLv2 states that you need to give full access to the source code to anyone with access to the binary/compiled distribution of the program. So, if you are only going to use the software inside of the company that is paying to develop it, you don't need to distribute the source code to the rest of the world, but just them.
Generally I would say that you're allowed to do such a thing, as long as you provide the source for the kernel, but there's one point where I'm unsure:
On a normal Linux system between the (GPL) kernel and a non-GPL compatible application, there is always the GNU libc, which is LGPL and thus allows derived works that are non-free. Now, if you have a non-free libc, that might be considered a derived work, since you are directly calling the kernel, and also using kernel headers.
As many others have said before, you might be better off using a *BSD.
If you're serious in developing a new operating system and want a working kernel to start with I suggest that you look into the FreeBSD kernel. It has a much more relaxed license than Linux, I think you might find it worthwhile.
Just my 2 cents...
I agree with MarkR but nobody has stated the obvious to you. If you are serious, you need to consult a lawyer with expertise in this area.