General function for reading numbers in Haskell - haskell

So, I wanted to get a Float from user and I have made this function :
getFloat :: IO Float
getFloat = do
string <- getLine
return (read string :: Float)
Now I would like to know how to make a more general function that can return ints, doubles and floats all in one go.
I have tried using Num type class to accomodate more possibilities but it doesn't work.
This is as far as I have got, it compiles but I'm not sure what I'm doing here exactly nor if it works at all.
etNumber :: (Read a) => IO a
getNumber = do
string <- getLine
return (read string)

When you write the signature
getNumber' :: Num a => IO a
it means this action will need to be able to offer any result type a that the caller might request – provided the type is an instance of the Num class. So essentially, the action knows nothing about the type it has to produce, though it can use the methods of that particular Num instance:
class Num a where
fromInteger :: Integer -> a
(+) :: a -> a -> a
...
Note that this does not give you any tools to generate fractional/floating-pt. numbers, only integer ones. You could in fact write
getNumber' :: Num a => IO a
getNumber' = do
i <- readLn
return $ fromInteger i
but this is pretty useless, indeed it'll fail if you actually attempt to read something like 0.3 to a float – because that can't be pulled through the intermediate Integer type.
You could do this:
getNumber'' :: Fractional a => IO a
getNumber'' = do
q <- readLn
return $ fromRational q
in this case, the input will first be read as an arbitrary-precision rational type (which can deal with decimal-fraction input) and then converted to the desired final type, like Double1. However, this can not be an integer type, because those obviously could not handle the possible fractional inputs!
Maybe what you envision is this:
getNumber''' :: IO (∃a. Num a => a)
which would be an existential type. That's basically a constrained dynamic type, i.e. the type is not chosen at compile-type by inference from what the caller wants, but instead at runtime, choosing a suitable type that can properly deal with the particular string input (integer if possible, floating if needed).
Well, Haskell doesn't have2 existential types, and for good reasons. Its standard parametric polymorphism is rather more useful because you actually get guarantees that some type will be exactly what you specify at compile time. Value should be integral? Make it an Integer; if then a decimal-fraction turns up in the input you get a meaningful error message right a way. Value might be fractional? Make it Rational or Double; these of course include integral values as well.
At any rate, there's no real reason to constrain the action to any numerical class. If you make it polymorphic at all, you should constrain it only as much as needed for the implementation (i.e., Read). To sum up: simply use readLn, don't write any getTʏᴘᴇ action at all.
1As a general rule, never use Float except when you're sure Double is not what you want.
2Well, it has a (generally disrecommended) workaround: existentially qualified record constructors.
{-# LANGUAGE GADTs #-}
data SomeNum where
SomeNum :: Num a => a -> SomeNum
getNumber'''' :: IO SomeNum

Related

How does the :: operator syntax work in the context of bounded typeclass?

I'm learning Haskell and trying to understand the reasoning behind it's syntax design at the same time. Most of the syntax is beautiful.
But since :: normally is like a type annotation, How is it that this works:
Input: minBound::Int
Output: -2147483648
There is no separate operator: :: is a type annotation in that example. Perhaps the best way to understand this is to consider this code:
main = print (f minBound)
f :: Int -> Int
f = id
This also prints -2147483648. The use of minBound is inferred to be an Int because it is the parameter to f. Once the type has been inferred, the value for that type is known.
Now, back to:
main = print (minBound :: Int)
This works in the same way, except that minBound is known to be an Int because of the type annotation, rather than for some more complex reason. The :: isn't some binary operation; it just directs the compiler that the expression minBound has the type Int. Once again, since the type is known, the value can be determined from the type class.
:: still means "has type" in that example.
There are two ways you can use :: to write down type information. Type declarations, and inline type annotations. Presumably you've been used to seeing type declarations, as in:
plusOne :: Integer -> Integer
plusOne = (+1)
Here the plusOne :: Integer -> Integer line is a separate declaration about the identifier plusOne, informing the compiler what its type should be. It is then actually defined on the following line in another declaration.
The other way you can use :: is that you can embed type information in the middle of any expression. Any expression can be followed by :: and then a type, and it means the same thing as the expression on its own except with the additional constraint that it must have the given type. For example:
foo = ('a', 2) :: (Char, Integer)
bar = ('a', 2 :: Integer)
Note that for foo I attached the entire expression, so it is very little different from having used a separate foo :: (Char, Integer) declaration. bar is more interesting, since I gave a type annotation for just the 2 but used that within a larger expression (for the whole pair). 2 :: Integer is still an expression for the value 2; :: is not an operator that takes 2 as input and computes some result. Indeed if the 2 were already used in a context that requires it to be an Integer then the :: Integer annotation changes nothing at all. But because 2 is normally polymorphic in Haskell (it could fit into a context requiring an Integer, or a Double, or a Complex Float) the type annotation pins down that the type of this particular expression is Integer.
The use is that it avoids you having to restructure your code to have a separate declaration for the expression you want to attach a type to. To do that with my simple example would have required something like this:
two :: Integer
two = 2
baz = ('a', two)
Which adds a relatively large amount of extra code just to have something to attach :: Integer to. It also means when you're reading bar, you have to go read a whole separate definition to know what the second element of the pair is, instead of it being clearly stated right there.
So now we can answer your direct question. :: has no special or particular meaning with the Bounded type class or with minBound in particular. However it's useful with minBound (and other type class methods) because the whole point of type classes is to have overloaded names that do different things depending on the type. So selecting the type you want is useful!
minBound :: Int is just an expression using the value of minBound under the constraint that this particular time minBound is used as an Int, and so the value is -2147483648. As opposed to minBound :: Char which is '\NUL', or minBound :: Bool which is False.
None of those options mean anything different from using minBound where there was already some context requiring it to be an Int, or Char, or Bool; it's just a very quick and simple way of adding that context if there isn't one already.
It's worth being clear that both forms of :: are not operators as such. There's nothing terribly wrong with informally using the word operator for it, but be aware that "operator" has a specific meaning in Haskell; it refers to symbolic function names like +, *, &&, etc. Operators are first-class citizens of Haskell: we can bind them to variables1 and pass them around. For example I can do:
(|+|) = (+)
x = 1 |+| 2
But you cannot do this with ::. It is "hard-wired" into the language, just as the = symbol used for introducing definitions is, or the module Main ( main ) where syntax for module headers. As such there are lots of things that are true about Haskell operators that are not true about ::, so you need to be careful not to confuse yourself or others when you use the word "operator" informally to include ::.
1 Actually an operator is just a particular kind of variable name that is applied by writing it between two arguments instead of before them. The same function can be bound to operator and ordinary variables, even at the same time.
Just to add another example, with Monads you can play a little like this:
import Control.Monad
anyMonad :: (Monad m) => Int -> m Int
anyMonad x = (pure x) >>= (\x -> pure (x*x)) >>= (\x -> pure (x+2))
$> anyMonad 4 :: [Int]
=> [18]
$> anyMonad 4 :: Either a Int
=> Right 18
$> anyMonad 4 :: Maybe Int
=> Just 18
it's a generic example telling you that the functionality may change with the type, another example:

Understanding readMaybe (Text.Read)

I'm currenlty learning Haskell and have questions regarding this example found in Joachim Breitner's online course CIS194:
import Text.Read
main = putStrLn "Hello World. Please enter a number:" >>
getLine >>= \s ->
case readMaybe s of -- why not `readMaybe s :: Maybe Int` ?!
Just n -> let m = n + 1 in
putStrLn (show m)
Nothing -> putStrLn "That’s not a number! Try again"
The code does exactly what expected, that is it returns an integer +1 if the input is an integer and it returns "That’s not a number! Try again" otherwise (e.g. if the input is a Double).
I don't understand why readMaybe s only returns Just n if n is of type Int. The type of readMaybe is readMaybe :: Read a => String -> Maybe a and therefore I thought it would only work if the line read instead:
case readMaybe s :: Maybe Int of
In fact if I just prompt > readMaybe "3" in ghci, it returns Nothing, whereas > readMaybe "3" :: Maybe Int returns Just 3.
To sum up, my question is the following: how does the compiler now that s is parsed to an Int and not something else (e.g. Double) without the use of :: Maybe Int? Why does it not return Nothing everytime ?
I hope my question was clear enough, thanks a lot for your help.
TL;DR: The context of readMaybe s tells us that it's a Num a => Maybe a, defaulting makes it a Maybe Integer.
We have to look at all places where the result of readMaybe is used to determine its type.
We have
Nothing, which doesn't tell us aynthing about a
Just n, and n is used in the context m = n + 1.
Since m = n + 1, we now know that n's type must be an instance of Num, since (+) :: Num a => a -> a -> a and 1 :: Num a => a. At this point the type isn't clear, therefore it gets defaulted:
4.3.4 Ambiguous Types, and Defaults for Overloaded Numeric Operations
topdecl -> default (type1 , ... , typen) (n>=0)
A problem inherent with Haskell -style overloading is the possibility of an ambiguous type. For example, using the read and show functions defined in Chapter 10, and supposing that just Int and Bool are members of Read and Show, then the expression
let x = read "..." in show x -- invalid
is ambiguous, because the types for show and read,
show :: forall a. Show a =>a ->String
read :: forall a. Read a =>String ->a
could be satisfied by instantiating a as either Int in both cases, or Bool. Such expressions are considered ill-typed, a static error.
We say that an expression e has an ambiguous type if, in its type forall u. cx =>t, there is a type variable u in u that occurs in cx but not in t. Such types are invalid.
The defaults defined in the Haskell report are default (Integer, Double), e.g. GHC tries Integer first, and if that doesn't work it tries to use Double.
Since Integer is a valid type in the context m = n + 1, we have m :: Integer, therefore n :: Integer, and at last readMaybe s :: Maybe Integer.
If you want to disable defaults, use default () and you'll be greeted by ambiguous types errors, just as you expected.
There indeed some underlying magic, due to how type inference works.
Here's a simpler example, run inside GHCi:
> print (1 :: Integer)
1
> print (1 :: Float)
1.0
Prelude> print 1
1
In the last line, 1 is a polymorphic value of type Num a => a, i.e. a value inside any numeric type like Integer and Float. If we consider that value inside type Integer, we print it as "1". If we consider it as a Float, we print it as "1.0". Other numeric types may even have different print formats.
Still, GHCi in the last line decides that 1 is an Integer. Why?
Well, it turns out that the code is ambiguous: after all 1 could be printed in different ways! Haskell in such cases raises an error, due to the ambiguity. However, it makes an exception for numeric types (those inc lass Num), to be more convenient to program. Concretely, when a numeric type is not precisely determined by the code, Haskell uses its defaulting rules, which specify which numeric types should be used.
GHC can warn when defaulting happens, if wanted.
Further, the types are propagated. If we evaluate
case readMaybe s of
Just x -> let z = x + length ['a','z']
in ...
GHC knows that length returns an Int. Also, (+) operates only on arguments of the same type, hence x has to be an Int as well. This in turns implies that the call readMaybe s has to return Maybe Int. Hence, the right Read instance for Ints is chosen.
Note how this information is propagated backwards by the type inference engine, so that the programmer does not have to add type annotations which can be deduced from the rest of the code. It happens very frequently in Haskell.
One can always be explicit, as in
readMaybe s :: Maybe Int
-- or, with extensions on, one can mention the variable part of the type, only
readMaybe s # Int
If you prefer, feel free to add such annotations. Sometimes, they make the code more readable since they document your intent. Whoever reads the code, can immediately spot which Read instance is being used here without looking at the context.

When do I need type annotations?

Consider these functions
{-# LANGUAGE TypeFamilies #-}
tryMe :: Maybe Int -> Int -> Int
tryMe (Just a) b = a
tryMe Nothing b = b
class Test a where
type TT a
doIt :: TT a -> a -> a
instance Test Int where
type TT Int = Maybe Int
doIt (Just a) b = a
doIt (Nothing) b = b
This works
main = putStrLn $ show $ tryMe (Just 2) 25
This doesn't
main = putStrLn $ show $ doIt (Just 2) 25
{-
• Couldn't match expected type ‘TT a0’ with actual type ‘Maybe a1’
The type variables ‘a0’, ‘a1’ are ambiguous
-}
But then, if I specify the type for the second argument it does work
main = putStrLn $ show $ doIt (Just 2) 25::Int
The type signature for both functions seem to be the same. Why do I need to annotate the second parameter for the type class function? Also, if I annotate only the first parameter to Maybe Int it still doesn't work. Why?
When do I need to cast types in Haskell?
Only in very obscure, pseudo-dependently-typed settings where the compiler can't proove that two types are equal but you know they are; in this case you can unsafeCoerce them. (Which is like C++' reinterpret_cast, i.e. it completely circumvents the type system and just treats a memory location as if it contains the type you've told it. This is very unsafe indeed!)
However, that's not what you're talking about here at all. Adding a local signature like ::Int does not perform any cast, it merely adds a hint to the type checker. That such a hint is needed shouldn't be surprising: you didn't specify anywhere what a is supposed to be; show is polymorphic in its input and doIt polymorphic in its output. But the compiler must know what it is before it can resolve the associated TT; choosing the wrong a might lead to completely different behaviour from the intended.
The more surprising thing is, really, that sometimes you can omit such signatures. The reason this is possible is that Haskell, and more so GHCi, has defaulting rules. When you write e.g. show 3, you again have an ambiguous a type variable, but GHC recognises that the Num constraint can be “naturally” fulfilled by the Integer type, so it just takes that pick.
Defaulting rules are handy when quickly evaluating something at the REPL, but they are fiddly to rely on, hence I recommend you never do it in a proper program.
Now, that doesn't mean you should always add :: Int signatures to any subexpression. It does mean that, as a rule, you should aim for making function arguments always less polymorphic than the results. What I mean by that: any local type variables should, if possible, be deducable from the environment. Then it's sufficient to specify the type of the final end result.
Unfortunately, show violates that condition, because its argument is polymorphic with a variable a that doesn't appear in the result at all. So this is one of the functions where you don't get around having some signature.
All this discussion is fine, but it hasn't yet been stated explicitly that in Haskell numeric literals are polymorphic. You probably knew that, but may not have realized that it has bearing on this question. In the expression
doIt (Just 2) 25
25 does not have type Int, it has type Num a => a — that is, its type is just some numeric type, awaiting extra information to pin it down exactly. And what makes this tricky is that the specific choice might affect the type of the first argument. Thus amalloy's comment
GHC is worried that someone might define an instance Test Integer, in which case the choice of instance will be ambiguous.
When you give that information — which can come from either the argument or the result type (because of the a -> a part of doIt's signature) — by writing either of
doIt (Just 2) (25 :: Int)
doIt (Just 2) 25 :: Int -- N.B. this annotates the type of the whole expression
then the specific instance is known.
Note that you do not need type families to produce this behavior. This is par for the course in typeclass resolution. The following code will produce the same error for the same reason.
class Foo a where
foo :: a -> a
main = print $ foo 42
You might be wondering why this doesn't happen with something like
main = print 42
which is a good question, that leftroundabout has already addressed. It has to do with Haskell's defaulting rules, which are so specialized that I consider them little more than a hack.
With this expression:
putStrLn $ show $ tryMe (Just 2) 25
We've got this starting information to work from:
putStrLn :: String -> IO ()
show :: Show a => a -> String
tryMe :: Maybe Int -> Int -> Int
Just :: b -> Maybe b
2 :: Num c => c
25 :: Num d => d
(where I've used different type variables everywhere, so we can more easily consider them all at once in the same scope)
The job of the type-checker is basically to find types to choose for all of those variables, so and then make sure that the argument and result types line up, and that all the required type class instances exist.
Here we can see that tryMe applied to two arguments is going to be an Int, so a (used as input to show) must be Int. That requires that there is a Show Int instance; indeed there is, so we're done with a.
Similarly tryMe wants a Maybe Int where we have the result of applying Just. So b must be Int, and our use of Just is Int -> Maybe Int.
Just was applied to 2 :: Num c => c. We've decided it must be applied to an Int, so c must be Int. We can do that if we have Num Int, and we do, so c is dealt with.
That leaves 25 :: Num d => d. It's used as the second argument to tryMe, which is expecting an Int, so d must be Int (again discharging the Num constraint).
Then we just have to make sure all the argument and result types line up, which is pretty obvious. This is mostly rehashing the above since we made them line up by choosing the only possible value of the type variables, so I won't get into it in detail.
Now, what's different about this?
putStrLn $ show $ doIt (Just 2) 25
Well, lets look at all the pieces again:
putStrLn :: String -> IO ()
show :: Show a => a -> String
doIt :: Test t => TT t -> t -> t
Just :: b -> Maybe b
2 :: Num c => c
25 :: Num d => d
The input to show is the result of applying doIt to two arguments, so it is t. So we know that a and t are the same type, which means we need Show t, but we don't know what t is yet so we'll have to come back to that.
The result of applying Just is used where we want TT t. So we know that Maybe b must be TT t, and therefore Just :: _b -> TT t. I've written _b using GHC's partial type signature syntax, because this _b is not like the b we had before. When we had Just :: b -> Maybe b we could pick any type we liked for b and Just could have that type. But now we need some specific but unknown type _b such that TT t is Maybe _b. We don't have enough information to know what that type is yet, because without knowing t we don't know which instance's definition of TT t we're using.
The argument of Just is 2 :: Num c => c. So we can tell that c must also be _b, and this also means we're going to need a Num _b instance. But since we don't know what _b is yet we can't check whether there's a Num instance for it. We'll come back to it later.
And finally the 25 :: Num d => d is used where doIt wants a t. Okay, so d is also t, and we need a Num t instance. Again, we still don't know what t is, so we can't check this.
So all up, we've figured out this:
putStrLn :: String -> IO ()
show :: t -> String
doIt :: TT t -> t -> t
Just :: _b -> TT t
2 :: _b
25 :: t
And have also these constraints waiting to be solved:
Test t, Num t, Num _b, Show t, (Maybe _b) ~ (TT t)
(If you haven't seen it before, ~ is how we write a constraint that two type expressions must be the same thing)
And we're stuck. There's nothing further we can figure out here, so GHC is going to report a type error. The particular error message you quoted is complaining that we can't tell that TT t and Maybe _b are the same (it calls the type variables a0 and a1), since we didn't have enough information to select concrete types for them (they are ambiguous).
If we add some extra type signatures for parts of the expression, we can go further. Adding 25 :: Int1 immediately lets us read off that t is Int. Now we can get somewhere! Lets patch that into the constrints we had yet to solve:
Test Int, Num Int, Num _b, Show Int, (Maybe _b) ~ (TT Int)
Num Int and Show Int are obvious and built in. We've got Test Int too, and that gives us the definition TT Int = Maybe Int. So (Maybe _b) ~ (Maybe Int), and therefore _b is Int too, which also allows us to discharge that Num _b constraint (it's Num Int again). And again, it's easy now to verify all the argument and result types match up, since we've filled in all the type variables to concrete types.
But why didn't your other attempt work? Lets go back to as far as we could get with no additional type annotation:
putStrLn :: String -> IO ()
show :: t -> String
doIt :: TT t -> t -> t
Just :: _b -> TT t
2 :: _b
25 :: t
Also needing to solve these constraints:
Test t, Num t, Num _b, Show t, (Maybe _b) ~ (TT t)
Then add Just 2 :: Maybe Int. Since we know that's also Maybe _b and also TT t, this tells us that _b is Int. We also now know we're looking for a Test instance that gives us TT t = Maybe Int. But that doesn't actually determine what t is! It's possible that there could also be:
instance Test Double where
type TT Double = Maybe Int
doIt (Just a) _ = fromIntegral a
doIt Nothing b = b
Now it would be valid to choose t as either Int or Double; either would work fine with your code (since the 25 could also be a Double), but would print different things!
It's tempting to complain that because there's only one instance for t where TT t = Maybe Int that we should choose that one. But the instance selection logic is defined not to guess this way. If you're in a situation where it's possible that another matching instance should exist, but isn't there due to an error in the code (forgot to import the module where it's defined, for example), then it doesn't commit to the only matching instance it can see. It only chooses an instance when it knows no other instance could possibly apply.2
So the "there's only one instance where TT t = Maybe Int" argument doesn't let GHC work backward to settle that t could be Int.
And in general with type families you can only "work forwards"; if you know the type you're applying a type family to you can tell from that what the resulting type should be, but if you know the resulting type this doesn't identify the input type(s). This is often surprising, since ordinary type constructors do let us "work backwards" this way; we used this above to conclude from Maybe _b = Maybe Int that _b = Int. This only works because with new data declarations, applying the type constructor always preserves the argument type in the resulting type (e.g. when we apply Maybe to Int, the resulting type is Maybe Int). The same logic doesn't work with type families, because there could be multiple type family instances mapping to the same type, and even when there isn't there is no requirement that there's an identifiable pattern connecting something in the resulting type to the input type (I could have type TT Char = Maybe (Int -> Double, Bool).
So you'll often find that when you need to add a type annotation, you'll often find that adding one in a place whose type is the result of a type family doesn't work, and you'll need to pin down the input to the type family instead (or something else that is required to be the same type as it).
1 Note that the line you quoted as working in your question main = putStrLn $ show $ doIt (Just 2) 25::Int does not actually work. The :: Int signature binds "as far out as possible", so you're actually claiming that the entire expression putStrLn $ show $ doIt (Just 2) 25 is of type Int, when it must be of type IO (). I'm assuming when you really checked it you put brackets around 25 :: Int, so putStrLn $ show $ doIt (Just 2) (25 :: Int).
2 There are specific rules about what GHC considers "certain knowledge" that there could not possibly be any other matching instances. I won't get into them in detail, but basically when you have instance Constraints a => SomeClass (T a), it has to be able to unambiguously pick an instance only by considering the SomeClass (T a) bit; it can't look at the constraints left of the => arrow.

How does fromIntegral work?

The type of fromIntegral is (Num b, Integral a) => a -> b. I'd like to understand how that's possible, what the code is that can convert any Integral number to any number type as needed.
The actual code for fromIntegral is listed as
fromIntegral = fromInteger . toInteger
The code for fromInteger is under instance Num Int and instance Num Integer They are respectively:
instance Num Int where
...
fromInteger i = I# (integerToInt i)
and
instance Num Integer where
...
fromInteger x = x
Assuming I# calls a C program that converts an Integer to an Int I don't see how either of these generate results that could be, say, added to a Float. How do they go from Int or Integer to something else?
fromInteger will be embedded in an expression which requires that it produce a certain type. It can't know what the required type will be? So what happens?
Thanks.
Because fromInteger is part of the Num class, every instance will have its own implementation. Neither of the two implementations (for Int and Integer) knows how to make a Float, but they aren't called when you're using fromInteger (or fromIntegral) to make a Float; that's what the Float instance of Num is for.
And so on for all other types. There is no one place that knows how to turn integers into any Num type; that would be impossible, since it would have to support user-defined Num instances that don't exist yet. Instead when each individual type is declared to be an instance of Num a way of doing that for that particular type must be provided (by implementing fromInteger).
fromInteger will be embedded in an expression which requires that it produce a certain type. It can't know what the required type will be? So what happens?
Actually, knowing what type it's expected to return from the expression the call is embedded in is exactly how it works.
Type checking/inference in Haskell works in two "directions" at once. It goes top-down, figuring out what types each expression should have, in order to fit into the bigger expression it's being used in. And it also goes "bottom-up", figuring out what type each expression should have from the smaller sub-expressions it's built out of. When it finds a place where those don't match, you get a type error (that's exactly where the "expected type" and "actual type" you see in type error messages cone from).
But because the compiler has that top-down knowledge (the "expected type") for every expression, it's perfectly able to figure out that a call of fromInteger is being used where a Float is expected, and so use the Float instance for Num in that call.
One aspect that distinguishes type classes from OOP interfaces is that type classes can dispatch on the result type of a method, not only on the type of its parameters. The classic example is the read :: Read a => String -> a function.
fromInteger has type fromInteger :: Num a => Integer -> a. The implementation is selected depending on the type of a. If the typechecker knows that a is a Float, the Num instance of Float will be used, not the one of Int or Integer.

Polymorphic signature for non-polymorphic function: why not?

As an example, consider the trivial function
f :: (Integral b) => a -> b
f x = 3 :: Int
GHC complains that it cannot deduce (b ~ Int). The definition matches the signature in the sense that it returns something that is Integral (namely an Int). Why would/should GHC force me to use a more specific type signature?
Thanks
Type variables in Haskell are universally quantified, so Integral b => b doesn't just mean some Integral type, it means any Integral type. In other words, the caller gets to pick which concrete types should be used. Therefore, it is obviously a type error for the function to always return an Int when the type signature says I should be able to choose any Integral type, e.g. Integer or Word64.
There are extensions which allow you to use existentially quantified type variables, but they are more cumbersome to work with, since they require a wrapper type (in order to store the type class dictionary). Most of the time, it is best to avoid them. But if you did want to use existential types, it would look something like this:
{-# LANGUAGE ExistentialQuantification #-}
data SomeIntegral = forall a. Integral a => SomeIntegral a
f :: a -> SomeIntegral
f x = SomeIntegral (3 :: Int)
Code using this function would then have to be polymorphic enough to work with any Integral type. We also have to pattern match using case instead of let to keep GHC's brain from exploding.
> case f True of SomeIntegral x -> toInteger x
3
> :t toInteger
toInteger :: Integral a => a -> Integer
In the above example, you can think of x as having the type exists b. Integral b => b, i.e. some unknown Integral type.
The most general type of your function is
f :: a -> Int
With a type annotation, you can only demand that you want a more specific type, for example
f :: Bool -> Int
but you cannot declare a less specific type.
The Haskell type system does not allow you to make promises that are not warranted by your code.
As others have said, in Haskell if a function returns a result of type x, that means that the caller gets to decide what the actual type is. Not the function itself. In other words, the function must be able to return any possible type matching the signature.
This is different to most OOP languages, where a signature like this would mean that the function gets to choose what it returns. Apparently this confuses a few people...

Resources