I am scraping a site for data every 50-90 seconds randomly using a C# console application running on .net 4.5. There are couple of values I am posting to the site and based off the returned value I kick off some other process. The problem is after say about a thousand hits or so I get what looks like a DNS error. I am trying to sort out what the source of the problem is first, before trying to fix it. Here below are some of the errors I see in my logs:
The remote name could not be resolved
Unable to connect to the remote server
Unexpected character encountered while parsing value <. Path '',
line 0, position 0.
Unable to read data from the transport connection An existing
connection was forcibly closed by the remote host.
Unable to read data from the transport connection An established
connection was aborted by the software in your host machine.
About 60% of the time I have got the first error. The remaining 40% is divided between the rest of the errors listed above.Are these issues caused by the website I am scraping or by the DNS servers on my end or something else? For all practical purposes the website I am scraping is ok with it as long as I keep the interval between automated hits above 45 seconds which I am doing. The data I am downloading is on an average about 30KB per hit. Please help me understand what could be going wrong and what things I could try to fix this.
I'd say you're running against an automated system designed to protect the site against a DDoS attack http://en.wikipedia.org/wiki/Denial-of-service_attack.
It's seeing that your same IP address is hitting it repeatedly in a short space of time and is simply blocking your resolution of the eventual server.
Related
I have a Node.js (Express.js) server for my React.js website as BFF. I use Node.js for SSR, proxying some request and cache some pages in Redis. In last time I found that my server time to time went down. I suggest an uptime is about 2 days. After restart, all ok, then response time growth from hour to hour. I have resource monitoring at this server, and I see that server don't have problems with RAM or CPU. It used about 30% of RAM and 20% of CPU.
I regret to say it's a big production site and I can't make minimal reproducible example, cause i don't know where is reason of these error :(
Except are memory and CPU leaks, what will be reasons for Node.js server might go went down?
I need at least direction to search.
UPDATE1:
"went down" - its when kubernetes kills container due 3 failed life checks (GET request to a root / of website)
My site don't use any BD connection but call lots of 3rd party API's. About 6 API requests due one GET/ request from browser
UPDATE2:
Thx. To your answers, guys.
To understand what happend inside my GET/ request, i'm add open-telemetry into my server. In longtime and timeout GET/ requests i saw long API requests with very big tcp.connect and tls.connect.
I think it happens due lack of connections or something about that. I think Mostafa Nazari is right.
I create patch and apply them within the next couple of days, and then will say if problem gone
I solve problem.
It really was lack of connections. I add reusing node-fetch connection due keepAlive and a lot of cache for saving connections. And its works.
Thanks for all your answers. They all right, but most helpful thing was added open-telemetry to my server to understand what exactly happens inside request.
For other people with these problems, I'm strongly recommended as first step, add telemetry to your project.
https://opentelemetry.io/
PS: i can't mark two replies as answer. Joe have most detailed and Mostafa Nazari most relevant to my problem. They both may be "best answers".
Tnx for help, guys.
Gradual growth of response time suggest some kind of leak.
If CPU and memory consumption is excluded, another potentially limiting resources include:
File descriptors - when your server forgets to close files. Monitor for number of files in /proc//fd/* to confirm this. See what those files are, find which code misbehaves.
Directory listing - even temporary directory holding a lot of files will take some time to scan, and if your application is not removing some temporary files and lists them - you will be in trouble quickly.
Zombie processes - just monitor total number of processes on the server.
Firewall rules (some docker network magic may in theory cause this on host system) - monitor length of output of "iptables -L" or "iptables-save" or equivalent on modern kernels. Rare condition.
Memory fragmentation - this may happen in languages with garbage collection, but often leaves traces with something like "Can not allocate memory" in logs. Rare condition, hard to fix. Export some health metrics and make your k8s restart your pod preemptively.
Application bugs/implementation problems. This really depends on internal logic - what is going on inside the app. There may be some data structure that gets filled in with data as time goes by in some tricky way, becoming O(N) instead of O(1). Really hard to trace down, unless you have managed to reproduce the condition in lab/test environment.
API calls from frontend shift to shorter, but more CPU-hungry ones. Monitor distribution of API call types over time.
Here are some of the many possibilities of why your server may go down:
Memory leaks The server may eventually fail if a Node.js application is leaking memory, as you stated in your post above. This may occur if the application keeps adding new objects to the memory without appropriately cleaning up.
Unhandled exceptions The server may crash if an exception is thrown in the application code and is not caught. To avoid this from happening, ensure that all exceptions are handled properly.
Third-party libraries If the application uses any third-party libraries, the server may experience problems as a result. Before using them, consider examining their resource usage, versions, or updates.
Network Connection The server's network connection may have issues if the server is sending a lot of queries to third-party APIs or if the connection is unstable. Verify that the server is handling connections, timeouts, and retries appropriately.
Connection to the Database Even though your server doesn't use any BD connections, it's a good idea to look for any stale connections to databases that could be problematic.
High Volumes of Traffic The server may experience performance issues if it is receiving a lot of traffic. Make sure the server is set up appropriately to handle a lot of traffic, making use of load balancing, caching, and other speed enhancement methods. Cloudflare is always a good option ;)
Concurrent Requests Performance problems may arise if the server is managing a lot of concurrent requests. Check to see if the server is set up correctly to handle several requests at once, using tools like a connection pool, a thread pool, or other concurrency management strategies.
(Credit goes to my System Analysis and Design course slides)
With any incoming/outgoing web requests, 2 File Descriptors will be acquired. as there is a limit on number of FDs, OS does not let new Socket to be opened, this situation cause "Timeout Error" on clients. you can easily check number of open FDs by sudo ls -la /proc/_PID_/fd/ | tail -n +4 | wc -l where _PID_ is nodejs PID, if this value is rising, you have connection leak issue.
I guess you need to do the following to prevent Connection Leak:
make sure you are closing outgoing API call Http Connection (it depends on how you are opening them, some libraries manage this and you just need to config them)
cache your outgoing API call (if it is possible) to reduce API call
for your outgoing API call, use Connection pool, this would manage number of open HttpConnection, reuse already-opened connection and ...
review your code, so that you can serve a request faster than now (for example make your API call more parallel instead of await or nested call). anything you do to make your response faster, is good for preventing this situation
I solve problem. It really was lack of connections. I add reusing node-fetch connection due keepAlive and a lot of cache for saving connections. And its works.
Thanks for all your answers. They all right, but most helpful thing was added open-telemetry to my server to understand what exactly happens inside request.
For other people with these problems, I'm strongly recommended as first step, add telemetry to your project.
https://opentelemetry.io/
I am hosting a RESTful API and my problem is that every first inbound request after a certain time will take about three seconds, compared to the normal ~100ms.
What I find most interesting is that it is always takes exactly 3100 to around 3250 milliseconds, not more and not less. So it seems pretty intentional to me.
I've already debugged the API and everything runs pretty much instantly except for one thing and that is this three second delay before my API even starts to receive the request.
My best guess is that something went wrong either in Apache or the DNS resolution but I don't know what exactly causes it (that's why I'm asking this question).
I am using the Apache ProxyPass like this:
ProxyRequests off
Timeout 54
ProxyTimeout 5400
ProxyPass /jokeapi http://localhost:8079
ProxyPassReverse /jokeapi http://localhost:8079
I'm using the Cloudflare/APNIC DNS gateway servers 1.1.1.1 and 0.0.0.0
Additionally, all my requests get routed through a Cloudflare SSL proxy before even reaching my network.
I've even partially rewritten the API so it responds with ReadStreams instead of loading the files into RAM and serving it at once but that didn't fix the problem.
My question is how I can fully debug the route a request takes and see precisely where this 3 second delay comes from.
Thanks!
PS: the server runs on NodeJS
I think the key is not related to network activity, but in the note that after a period of idle activity the first response to the API in a while requires slightly over 3 seconds. I am assuming that follow up actions are back to the 100ms window.
As you are using localhost, this is not a routing issue. If you want, you can just as easily use loopback, 127.0.0.1, to avoid a name resolution hit, but such a hit on a reserved hostname would be microseconds.
I suspect that the compiled version of your RESTful function has aged out of the cache for your system. The first hit after a period of non-use time then requires a recompile, and so long as the compiled instructions are exercised for a period of time they will remain in cache and contoninue to respond in the 100ms range. We observe this condition quite often in multiuser performance testing after cold boots of systems (setting initial conditions). Ramp-ups of the test users take the hit for the recompiles of common code before hitting the time under full load.
Another item to strike back at the network side of the house, DNS timeouts and bind cache entries tend to be quite long, usually significant portions of a day or even longer. Even so, the odds that a DNS lookup for an item which has aged out of the bind cache would not add three seconds to your initial connection time.
When we migrated our apps to azure from rackspace, we saw almost 50% of http requests getting read timeouts.
We tried placing the client both inside and outside azure with the same results. The client in this case is also a server btw, so no geographic/browser issues either.
We even tried increasing the size of the box to ensure azure wasn't throttling. But even using D boxes for a single request, the result was the same.
Once we moved out apps out of azure they started functioning properly again.
Each query was done directly on an instance using a public ip, so no load balancer issues either.
Almost 50% of queries ran into this issue. The timeout was set to 15 minutes.
Region was US East 2
Having 50% of HTTP requests timing out is not normal behavior. This is why you need to analyze what is causing those timeouts by validating the requests are hitting your VM. For this, I would recommend you running a packet capture on your server and analyze response times, as well as look for high number of retransmissions; it is even better if you can take a simultaneous network trace on your clients machines so you can do TCP sequence number analysis and compare packets sent vs received.
If you are seeing high latencies in the packet capture or high number of retransmissions, it requires detailed analysis. I strongly suggest you to open a support incident so Microsoft support can help you investigate your issue further.
In my company we experienced a serious problem today: our production server went down. Most people accessing our software via a browser were unable to get a connection, however people who had already been using the software were able to continue using it. Even our hot standby server was unable to communicate with the production server, which it does using HTTP, not even going out to the broader internet. The whole time the server was accessible via ping and ssh, and in fact was quite underloaded - it's normally running at 5% CPU load and it was even lower at this time. We do almost no disk i/o.
A few days after the problem started we have a new variation: port 443 (HTTPS) is responding but port 80 stopped responding. The server load is very low. Immediately after restarting tomcat, port 80 started responding again.
We're using tomcat7, with maxThreads="200", and using maxConnections=10000. We serve all data out of main memory, so each HTTP request completes very quickly, but we have a large number of users doing very simple interactions (this is high school subject selection). But it seems very unlikely we would have 10,000 users all with their browser open on our page at the same time.
My question has several parts:
Is it likely that the "maxConnections" parameter is the cause of our woes?
Is there any reason not to set "maxConnections" to a ridiculously high value e.g. 100,000? (i.e. what's the cost of doing so?)
Does tomcat output a warning message anywhere once it hits the "maxConnections" message? (We didn't notice anything).
Is it possible there's an OS limit we're hitting? We're using CentOS 6.4 (Linux) and "ulimit -f" says "unlimited". (Do firewalls understand the concept of Tcp/Ip connections? Could there be a limit elsewhere?)
What happens when tomcat hits the "maxConnections" limit? Does it try to close down some inactive connections? If not, why not? I don't like the idea that our server can be held to ransom by people having their browsers on it, sending the keep-alive's to keep the connection open.
But the main question is, "How do we fix our server?"
More info as requested by Stefan and Sharpy:
Our clients communicate directly with this server
TCP connections were in some cases immediately refused and in other cases timed out
The problem is evident even connecting my browser to the server within the network, or with the hot standby server - also in the same network - unable to do database replication messages which normally happens over HTTP
IPTables - yes, IPTables6 - I don't think so. Anyway, there's nothing between my browser and the server when I test after noticing the problem.
More info:
It really looked like we had solved the problem when we realised we were using the default Tomcat7 setting of BIO, which has one thread per connection, and we had maxThreads=200. In fact 'netstat -an' showed about 297 connections, which matches 200 + queue of 100. So we changed this to NIO and restarted tomcat. Unfortunately the same problem occurred the following day. It's possible we misconfigured the server.xml.
The server.xml and extract from catalina.out is available here:
https://www.dropbox.com/sh/sxgd0fbzyvuldy7/AACZWoBKXNKfXjsSmkgkVgW_a?dl=0
More info:
I did a load test. I'm able to create 500 connections from my development laptop, and do an HTTP GET 3 times on each, without any problem. Unless my load test is invalid (the Java class is also in the above link).
It's hard to tell for sure without hands-on debugging but one of the first things I would check would be the file descriptor limit (that's ulimit -n). TCP connections consume file descriptors, and depending on which implementation is in use, nio connections that do polling using SelectableChannel may eat several file descriptors per open socket.
To check if this is the cause:
Find Tomcat PIDs using ps
Check the ulimit the process runs with: cat /proc/<PID>/limits | fgrep 'open files'
Check how many descriptors are actually in use: ls /proc/<PID>/fd | wc -l
If the number of used descriptors is significantly lower than the limit, something else is the cause of your problem. But if it is equal or very close to the limit, it's this limit which is causing issues. In this case you should increase the limit in /etc/security/limits.conf for the user with whose account Tomcat is running and restart the process from a newly opened shell, check using /proc/<PID>/limits if the new limit is actually used, and see if Tomcat's behavior is improved.
While I don't have a direct answer to solve your problem, I'd like to offer my methods to find what's wrong.
Intuitively there are 3 assumptions:
If your clients hold their connections and never release, it is quite possible your server hits the max connection limit even there is no communications.
The non-responding state can also be reached via various ways such as bugs in the server-side code.
The hardware conditions should not be ignored.
To locate the cause of this problem, you'd better try to replay the scenario in a testing environment. Perform more comprehensive tests and record more detailed logs, including but not limited:
Unit tests, esp. logic blocks using transactions, threading and synchronizations.
Stress-oriented tests. Try to simulate all the user behaviors you can come up with and their combinations and test them in a massive batch mode. (ref)
More specified Logging. Trace client behaviors and analysis what happened exactly before the server stopped responding.
Replace a server machine and see if it will still happen.
The short answer:
Use the NIO connector instead of the default BIO connector
Set "maxConnections" to something suitable e.g. 10,000
Encourage users to use HTTPS so that intermediate proxy servers can't turn 100 page requests into 100 tcp connections.
Check for threads hanging due to deadlock problems, e.g. with a stack dump (kill -3)
(If applicable and if you're not already doing this, write your client app to use the one connection for multiple page requests).
The long answer:
We were using the BIO connector instead of NIO connector. The difference between the two is that BIO is "one thread per connection" and NIO is "one thread can service many connections". So increasing "maxConnections" was irrelevant if we didn't also increase "maxThreads", which we didn't, because we didn't understand the BIO/NIO difference.
To change it to NIO, put this in the element in server.xml:
protocol="org.apache.coyote.http11.Http11NioProtocol"
From what I've read, there's no benefit to using BIO so I don't know why it's the default. We were only using it because it was the default and we assumed the default settings were reasonable and we didn't want to become experts in tomcat tuning to the extent that we now have.
HOWEVER: Even after making this change, we had a similar occurrence: on the same day, HTTPS became unresponsive even while HTTP was working, and then a little later the opposite occurred. Which was a bit depressing. We checked in 'catalina.out' that in fact the NIO connector was being used, and it was. So we began a long period of analysing 'netstat' and wireshark. We noticed some periods of high spikes in the number of connections - in one case up to 900 connections when the baseline was around 70. These spikes occurred when we synchronised our databases between the main production server and the "appliances" we install at each customer site (schools). The more we did the synchronisation, the more we caused outages, which caused us to do even more synchronisations in a downward spiral.
What seems to be happening is that the NSW Education Department proxy server splits our database synchronisation traffic into multiple connections so that 1000 page requests become 1000 connections, and furthermore they are not closed properly until the TCP 4 minute timeout. The proxy server was only able to do this because we were using HTTP. The reason they do this is presumably load balancing - they thought by splitting the page requests across their 4 servers, they'd get better load balancing. When we switched to HTTPS, they are unable to do this and are forced to use just one connection. So that particular problem is eliminated - we no longer see a burst in the number of connections.
People have suggested increasing "maxThreads". In fact this would have improved things but this is not the 'proper' solution - we had the default of 200, but at any given time, hardly any of these were doing anything, in fact hardly any of these were even allocated to page requests.
I think you need to debug the application using Apache JMeter for number of connection and use Jconsole or Zabbix to look for heap space or thread dump for tomcat server.
Nio Connector of Apache tomcat can have maximum connections of 10000 but I don't think thats a good idea to provide that much connection to one instance of tomcat better way to do this is to run multiple instance of tomcat.
In my view best way for Production server: To Run Apache http server in front and point your tomcat instance to that http server using AJP connector.
Hope this helps.
Are you absolutely sure you're not hitting the maxThreads limit? Have you tried changing it?
These days browsers limit simultaneous connections to a max of 4 per hostname/ip, so if you have 50 simultaneous browsers, you could easily hit that limit. Although hopefully your webapp responds quickly enough to handle this. Long polling has become popular these days (until websockets are more prevalent), so you may have 200 long polls.
Another cause could be if you use HTTP[S] for app-to-app communication (that is, no browser involved). Sometimes app writers are sloppy and create new connections for performing multiple tasks in parallel, causing TCP and HTTP overhead. Double check that you are not getting an inflood of requests. Log files can usually help you on this, or you can use wireshark to count the number of HTTP requests or HTTP[S] connections. If possible, modify your API to handle multiple API calls in one HTTP request.
Related to the last one, if you have many HTTP/1.1 requests going across one connection, and intermediate proxy may be splitting them into multiple connections for load balancing purposes. Sounds crazy I know, but I've seen it happen.
Lastly, some crawl bots ignore the crawl delay set in robots.txt. Again, log files and/or wireshark can help you determine this.
Overall, run more experiments with more changes. maxThreads, https, etc. before jumping to conclusions with maxConnections.
I have a intranet SiteCore website set up on IIS 7 which randomly throws the following error message
HTTP Error 503.2 - Service Unavailable
The serverRuntime#appConcurrentRequestLimit setting is being exceeded.
To fix this issue, I have made following changes
Increased the Queue Length of application pool myrjetAppPool from 1000 to 65535.
Modified Machine.Config to increase requestQueueLimit property of ProcessModel element to 100000
Increased appConcurrentRequestLimit to 10000 by running
C:\Windows\System32\inetsrv\appcmd.exe set config /section:serverRuntime /appConcurrentRequestLimit:100000
But I'm still getting the same error. ANy help is greatly appreaciated.
You might check to see where all your threads are going. We had occurrences where threads for Media Library assets were hanging and blocking up the queue.
In IIS Manager, select the server node from the tree, then the "Worker Processes" feature icon, then right-click the application pool of interest and select "View current requests". You might find something is getting stuck. I sometimes hit F5 on this screen a few dozen times in very quick succession to see the rate the requests are going through (of course Performance Monitor is better for viewing metrics but it won't tell you what URLs are being processed).
Investigate references in the linked url to 'MaxConcurrentReqeustsPerCPU' which you may need to set by creating a new registry key, depending on your OS and framework.
https://learn.microsoft.com/en-us/archive/blogs/tmarq/asp-net-thread-usage-on-iis-7-5-iis-7-0-and-iis-6-0
As already commented - check the actual concurrent request count using performance counters to determine which limit you're hitting i.e. it could be a limit of 5000 or maybe 12 (per cpu).
Edit: I realise this may look like I'm talking about a different setting entirely, but I believe there is overlap here.
We got this problem after an installation of an IIS plugin. After long investigating we saw that the config-file C:\Windows\System32\inetsrv\config\applicationHost.config had an extra location tag for the site with the problem. After removing the extra entry and an iisreset, the site/server worked normally againg. So something must went wrong during the installation....