I am trying to create a new implementation of IPersistenceStore.
I understand I need to register my new implementation by using a IServiceLocator which is configured in the glimpse node of my web.config like so:
<glimpse defaultRuntimePolicy="On" endpointBaseUri="~/Glimpse.axd" serviceLocatorType="MyNewServiceLocator, MyAssembly">
However, I am seeing the following behaviour:
The GetInstance method of my IServiceLocator is never hit
The ctor of my new IPersistenceStore is hit at app start up
No other methods on my IPersistenceStore are ever hit (ie the Glimpse data is still being stored in the default impl of IPersistenceStore)
It appears that my IPersistenceStore is not being registered correctly. Why could this be?
It's not clear what could be wrong, as you don't show any of your code related to the IServiceLocator
Something along these lines should suffice to have your custom persistence store returned by your custom service locator:
public class MyNewServiceLocator : IServiceLocator
{
public T GetInstance<T>() where T : class
{
var type = typeof(T);
if (type == typeof(IPersistenceStore))
{
return new CustomPersistenceStore() as T;
}
return null;
}
public ICollection<T> GetAllInstances<T>() where T : class
{
return null;
}
}
Related
ServiceStack.Funq.Quartz Sample Code is
public class MyServices : Service
{
public object Any(Hello request)
{
return new HelloResponse { Result = "Hello, {0}!".Fmt(request.Name) };
}
}
public class HelloJob : IJob
{
private MyServices MyServices { get; set; }
public HelloJob(MyServices myServices)
{
MyServices = myServices;
}
public void Execute(IJobExecutionContext context)
{
var response = MyServices.Any(new ServiceModel.Hello
{
Name = "CodeRevver"
});
response.PrintDump();
}
}
The above is works fine. if I in the MyServices Class, removed the Any function, and comment the Execute inner code.
public class MyServices : Service
{
}
the quartz.net will get the error:
[Quartz.Core.ErrorLogger】 An error occurred instantiating job to be executed. job= 'JobGroup1.GetUserJob111' Problem instantiating type 'ServiceStackWithQuartz.HelloJob'
why the class must have public object Any(Hello request) function ?
Thanks for using the package – I had no idea that other people would find it useful.
So If I understand correctly, in your situation you have:
public class MyServices : Service
{
}
And you’re trying to resolve this Service via constructor injection, which is effectively doing a:
container.Resolve<MyServices>();
This will fail because of the way the ServiceStack Funq IoC works. You can’t resolve a ServiceStack Service that has nothing in it (you'd probably never want to either) – It has to at least have one service implementation, It doesn’t matter what the implementation is.
Also, if you want to improve ServiceStack.Funq.Quartz, feel free to contribute to the code base.
Edit: It's probably worth mentioning that you can inject a "Non-Service" class with your logic in it if you want. You can resolve other classes that aren't based off of ServiceStack.Service even if there's nothing in them.
Edit 2: Responding to your "Service wont dispose" problem. This is the same across ServiceStack and has nothing to do with your Quartz Job. If you call a:
container.Resolve<MyServices>().Any(new new ServiceModel.Hello { });
from AppHost for example, your service wont dispose by itself. If you want it to dispose you can wrap it in a using statement. e.g.
using (var service = MyServices)
{
var response = MyServices.Any(new ServiceModel.Hello { });
}
The using will ensure that your service will be disposed afterwards.
Alternatively you can add the interface "IDispose" on to your Quartz Job and implement a Dispose() method that will do a:
MyServices.Dispose();
This will be called after a job has executed.
Core Question:
I have a generic interface IValidatingAttribute<T>, which creates the contract bool IsValid(T value); The interface is implemented by a variety of Attributes, which all serve the purpose of determining if the current value of said Field or Property they decorate is valid per the interface spec that I'm dealing with. What I want to do is create a single validation method that will scan every field and property of the given model, and if that field or property has any attributes that implement IValidatingAttribute<T>, it should validate the value against each of those attributes. So, using reflection I have the sets of fields and properties, and within those sets I can get the list of attributes. How can I determine which attributes implement IValidatingAttribute and then call IsValid(T value)?
background:
I am working on a library project that will be used to develop a range of later projects against the interface for a common third party system. (BL Server, for those interested)
BL Server has a wide range of fairly arcane command structures that have varying validation requirements per command and parameter, and then it costs per transaction to call these commands, so one of the library requirements is to easily define the valdiation requirements at the model level to catch invalid commands before they are sent. It is also intended to aid in the development of later projects by allowing developers to catch invalid models without needing to set up the BL server connections.
Current Attempt:
Here's where I've gotten so far (IsValid is an extension method):
public interface IValidatingAttribute<T>
{
bool IsValid(T value);
}
public static bool IsValid<TObject>(this TObject sourceObject) where TObject : class, new()
{
var properties = typeof(TObject).GetProperties();
foreach (var prop in properties)
{
var attributeData = prop.GetCustomAttributesData();
foreach (var attribute in attributeData)
{
var attrType = attribute.AttributeType;
var interfaces = attrType.GetInterfaces().Where(inf => inf.IsGenericType).ToList();
if (interfaces.Any(infc => infc.Equals(typeof(IValidatingAttribute<>))))
{
var value = prop.GetValue(sourceObject);
//At this point, I know that the current attribute implements 'IValidatingAttribute<>', but I don't know what T is in that implementation.
//Also, I don't know what data type 'value' is, as it's currently boxed as an object.
//The underlying type to value will match the expected T in IValidatingAttribute.
//What I need is something like the line below:
if (!(attribute as IValidatingAttribute<T>).IsValid(value as T)) //I know this condition doesn't work, but it's what I'm trying to do.
{
return false;
}
}
}
return true;
}
}
Example usage:
Just to better explain what I am trying to achieve:
public class SomeBLRequestObject
{
/// <summary>
/// Required, only allows exactly 2 alpha characters.
/// </summary>
[MinCharacterCount(2), MaxCharacterCount(2), IsRequired, AllowedCharacterSet(CharSets.Alpha))]
public string StateCode {get; set;}
}
And then, later on in code:
...
var someBLObj = SomeBLRequestObjectFactory.Create();
if(!someBLObj.IsValid())
{
throw new InvalidObjectException("someBLObj is invalid!");
}
Thank you, I'm really looking for a solution to the problem as it stands, but I'm more than willing to listen if somebody has a viable alternative approach.
I'm trying to go generic extension method with this because there are literally hundreds of the BL Server objects, and I'm going with attributes because each of these objects can have upper double digit numbers of properties, and it's going to make things much, much easier if the requirements for each object are backed in and nice and readable for the next developer to have to use this thing.
Edit
Forgot to mention : This Question is the closest I've found, but what I really need are the contents of \\Do Something in TcKs's answer.
Well, after about 6 hours and a goods nights sleep, I realized that I was over-complicating this thing. Solved it with the following (ExtValidationInfo is the class that the below two extensions are in.):
Jon Skeet's answer over here pointed me at a better approach, although it still smells a bit, this one at least works.
public static bool IsValid<TObject>(this TObject sourceObject) where TObject : class, new()
{
var baseValidationMethod = typeof(ExtValidationInfo).GetMethod("ValidateProperty", BindingFlags.Static | BindingFlags.Public);
var properties = TypeDataHandler<TObject>.Properties;
foreach (var prop in properties)
{
var attributes = prop.GetCustomAttributes(typeof(IValidatingAttribute<>)).ToList();
if (!attributes.Any())
{
continue; // No validators, skip.
}
var propType = prop.PropertyType;
var validationMethod = baseValidationMethod.MakeGenericMethod(propType);
var propIsValid = validationMethod.Invoke(null, prop.GetValue(sourceObject), attributes);
if(!propIsValid)
{
return false;
}
}
return true;
}
public static bool ValidateProperty<TPropType>(TPropType value, List<IValidatingAttribute<TPropType>> validators)
{
foreach (var validator in validators)
{
if (!validator.IsValid(value))
{
return false;
}
}
return true;
}
I've created a custom part and attached it to the Site content type. In the driver for my custom part, I'm overriding the Importing and Exporting methods but when I perform an export or import while debugging they never get called.
My part has two bool properties and one complex type. When I examine the export file that get's produced my bool properties are present but my complex type is not so it seems that Orchard is automatically handling the simple types.
Any ideas why my Importing and Exporting methods are not being called?
Update:
After some more debugging I think I see why my complex type is not being exported. In the ExportSiteSettings method of the ImportExportService there is an explicit check done on the property type (line 151) and only properties of type string, bool and int have their values included in the site settings portion of the export. From what I can tell, the driver for my part is never involved in exporting site settings.
If I select the Site type and Data as export options my driver's Exporting method does get called and the properties are included in the Data section of the export file but when I go to import, they are ignored and my driver's Importing method is never called (I think because the Site element under Data has no Id attribute set).
I'm not sure what to do here. Is exporting complex types just not supported on the Site content type?
Here's the code for my part:
public class ProductSettingsPart : ContentPart {
public bool DefineSiteDefaults {
get { return this.Retrieve(p => p.DefineSiteDefaults); }
set { this.Store(p => p.DefineSiteDefaults, value); }
}
public bool AllowProductOverrides {
get { return this.Retrieve(p => p.AllowProductOverrides); }
set { this.Store(p => p.AllowProductOverrides, value); }
}
public IEnumerable<PriceTier> PriceTiers {
get {
var rawTiers = Retrieve<string>("PriceTiers");
return PriceTier.DeserializePriceTiers(rawTiers);
}
set {
var serializedTiers = PriceTier.SerializePriceTiers(value);
Store("PriceTiers", serializedTiers ?? "");
}
}
}
I had the same problem, I needed to export SearchSettingsPart's SearchedFields property, a string[].
I fixed the issue and submitted a pull request.
https://orchard.codeplex.com/SourceControl/network/forks/StanleyGoldman/Issue20404/contribution/6048
There is a convenience method that exports the bool/int/string fields
You should be able to use your Part Driver's Import Export method now.
protected override void Exporting(SearchSettingsPart part, ExportContentContext context) {
DefaultSettingsPartImportExport.ExportSettingsPart(part, context);
context.Element(part.PartDefinition.Name).Add(new XAttribute("SearchedFields", string.Join(",", part.SearchedFields)));
}
protected override void Importing(SearchSettingsPart part, ImportContentContext context) {
var xElement = context.Data.Element(part.PartDefinition.Name);
if (xElement == null) return;
DefaultSettingsPartImportExport.ImportSettingPart(part, xElement);
var searchedFields = xElement.Attribute("SearchedFields");
part.SearchedFields = searchedFields.Value.Split(new[] {","}, StringSplitOptions.RemoveEmptyEntries);
}
My current implementation for service and business layer is straight forward as below.
public class MyEntity { }
// Business layer
public interface IBusiness { IList<MyEntity> GetEntities(); }
public class MyBusinessOne : IBusiness
{
public IList<MyEntity> GetEntities()
{
return new List<MyEntity>();
}
}
//factory
public static class Factory
{
public static T Create<T>() where T : class
{
return new MyBusinessOne() as T; // returns instance based on T
}
}
//Service layer
public class MyService
{
public IList<MyEntity> GetEntities()
{
return Factory.Create<IBusiness>().GetEntities();
}
}
We needed some changes in current implementation. Reason being data grew over the time and service & client cannot handle the volume of data. we needed to implement pagination to the current service. We also expect some more features (like return fault when data is more that threshold, apply filters etc), so the design needs to be updated.
Following is my new proposal.
public interface IBusiness
{
IList<MyEntity> GetEntities();
}
public interface IBehavior
{
IEnumerable<T> Apply<T>(IEnumerable<T> data);
}
public abstract class MyBusiness
{
protected List<IBehavior> Behaviors = new List<IBehavior>();
public void AddBehavior(IBehavior behavior)
{
Behaviors.Add(behavior);
}
}
public class PaginationBehavior : IBehavior
{
public int PageSize = 10;
public int PageNumber = 2;
public IEnumerable<T> Apply<T>(IEnumerable<T> data)
{
//apply behavior here
return data
.Skip(PageNumber * PageSize)
.Take(PageSize);
}
}
public class MyEntity { }
public class MyBusinessOne : MyBusiness, IBusiness
{
public IList<MyEntity> GetEntities()
{
IEnumerable<MyEntity> result = new List<MyEntity>();
this.Behaviors.ForEach(rs =>
{
result = rs.Apply<MyEntity>(result);
});
return result.ToList();
}
}
public static class Factory
{
public static T Create<T>(List<IBehavior> behaviors) where T : class
{
// returns instance based on T
var instance = new MyBusinessOne();
behaviors.ForEach(rs => instance.AddBehavior(rs));
return instance as T;
}
}
public class MyService
{
public IList<MyEntity> GetEntities(int currentPage)
{
List<IBehavior> behaviors = new List<IBehavior>() {
new PaginationBehavior() { PageNumber = currentPage, }
};
return Factory.Create<IBusiness>(behaviors).GetEntities();
}
}
Experts please suggest me if my implementation is correct or I am over killing it. If it correct what design pattern it is - Decorator or Visitor.
Also my service returns JSON string. How can I use this behavior collections to serialize only selected properties rather than entire entity. List of properties comes from user as request. (Kind of column picker)
Looks like I don't have enough points to comment on your question. So, I am gonna make some assumption as I am not a C# expert.
Assumption 1: Looks like you are getting the data first and then applying the pagination using behavior object. If so, this is a wrong approach. Lets say there are 500 records and you are showing 50 records per fetch. Instead of simply fetching 50 records from DB, you are fetching 500 records for 10 times and on top of it you are adding a costly filter. DB is better equipped to do this job that C# or Java.
I would not consider pagination as a behavior with respect to the service. Its the behavior of the presentation layer. Your service should only worry about 'Data Granularity'. Looks like one of your customer wants all the data in one go and others might want a subset of that data.
Option 1: In DAO layer, have two methods: one for pagination and other for regular fetch. Based on the incoming params decide which method to call.
Option 2: Create two methods at service level. One for a small subset of data and the other for the whole set of data. Since you said JSON, this should be Restful service. Then based on the incoming URL, properly call the correct method. If you use Jersey, this should be easy.
In a service, new behaviors can be added by simply exposing new methods or adding new params to existing methods/functionalities (just make sure those changes are backward compatible). We really don't need Decorator or Visitor pattern. The only concern is no existing user should be affected.
I'm struggling with implementing a factory object. Here's the context :
I've in a project a custom store. In order to read/write records, I've written this code in a POCO model/separated repository:
public class Id { /* skip for clarity*/} // My custom ID representation
public interface IId
{
Id Id { get; set; }
}
public interface IGenericRepository<T> where T : IId
{
T Get(Id objectID);
void Save(T #object);
}
public interface IContext
{
TRepository GetRepository<T, TRepository>()
where TRepository : IGenericRepository<T>
where T:IId;
IGenericRepository<T> GetRepository<T>()
where T:IId;
}
My IContext interface defines two kind of repositories.
The former is for standard objects with only get/save methods, the later allows me to define specifics methods for specific kind of objects. For example :
public interface IWebServiceLogRepository : IGenericRepository<WebServiceLog>
{
ICollection<WebServiceLog> GetOpenLogs(Id objectID);
}
And it the consuming code I can do one of this :
MyContext.GetRepository<Customer>().Get(myID); --> standard get
MyContext.GetRepository<WebServiceLog, IWebServiceLogRepository>().GetOpenLogs(myID); --> specific operation
Because most of objects repository are limited to get and save operations, I've written a generic repository :
public class BaseRepository<T> : IGenericRepository<T>
where T : IId, new()
{
public virtual T Get(Id objectID){ /* provider specific */ }
public void Save(T #object) { /* provider specific */ }
}
and, for custom ones, I simply inherits the base repository :
internal class WebServiceLogRepository: BaseRepository<WebServiceLog>, IWebServiceLogRepository
{
public ICollection<WebServiceLog> GetByOpenLogsByRecordID(Id objectID)
{
/* provider specific */
}
}
Everything above is ok (at least I think it's ok). I'm now struggling to implement the MyContext class. I'm using MEF in my project for other purposes. But because MEF doesn't support (yet) generic exports, I did not find a way to reach my goal.
My context class is looking like by now :
[Export(typeof(IContext))]
public class UpdateContext : IContext
{
private System.Collections.Generic.Dictionary<Type, object> m_Implementations;
public UpdateContext()
{
m_Implementations = new System.Collections.Generic.Dictionary<Type, object>();
}
public TRepository GetRepository<T, TRepository>()
where T : IId
where TRepository : IGenericRepository<T>
{
var tType = typeof(T);
if (!m_Implementations.ContainsKey(tType))
{
/* this code is neither working nor elegant for me */
var resultType = AppDomain.CurrentDomain.GetAssemblies().SelectMany(
(a) => a.GetTypes()
).Where((t)=>t.GetInterfaces().Contains(typeof(TRepository))).Single();
var result = (TRepository)resultType.InvokeMember("new", System.Reflection.BindingFlags.CreateInstance, null, null, new object[] { this });
m_Implementations.Add(tType, result);
}
return (TRepository)m_Implementations[tType];
}
public IGenericRepository<T> GetRepository<T>() where T : IId
{
return GetRepository<T, IGenericRepository<T>>();
}
}
I'd appreciate a bit of help to unpuzzle my mind with this quite common scenario
Not sure if I've understood you correctly, but I think you're perhaps over complicating things. To begin with, make sure you've designed your code independent of any factory or Dependency Injection framework or composition framework.
For starters lets look at what you want your calling code to look like, this is what you said:
MyContext.GetRepository<Customer>().Get(myID); --> standard get
MyContext.GetRepository<WebServiceLog, IWebServiceLogRepository>().GetOpenLogs(myID);
You don't have to agree with my naming choices below, but it indicates what I undertand from your code, you can tell me if I'm wrong. Now, I feel like the calling would be simpler like this:
RepositoryFactory.New<IRepository<Customer>>().Get(myId);
RepositoryFactory.New<IWebServiceLogRepository>().GetOpenLogs(myId);
Line 1:
Because the type here is IRepository it's clear what the return type is, and what the T type is for the base IRepository.
Line 2:
The return type here from the factory is IWebServiceLogRepository. Here you don'y need to specify the entity type, your interface logically already implements IRepository. There's no need to specify this again.
So your interface for these would look like this:
public interface IRepository<T>
{
T Get(object Id);
T Save(T object);
}
public interface IWebServiceLogRepository: IRepository<WebServiceLog>
{
List<WebServiceLog> GetOpenLogs(object Id);
}
Now I think the implementations and factory code for this would be simpler as the factory only has to know about a single type. On line 1 the type is IRepository, and in line 2, IWebServiceLogRepository.
Try that, and try rewriting your code to simply find classes that implement those types and instantiating them.
Lastly, in terms of MEF, you could carry on using that, but Castle Windsor would really make things much simpler for you, as it lets you concentrate on your architecture and code design, and its very very simple to use. You only ever reference Castle in your app startup code. The rest of your code is simply designed using the Dependency Injection pattern, which is framework agnostic.
If some of this isn't clear, let me know if you'd like me to update this answer with the implementation code of your repositories too.
UPDATE
and here's the code which resolves the implementations. You were making it a bit harder for yourself by not using the Activator class.
If you use Activator and use only one Generic parameter as I've done in the method below, you should be ok. Note the code's a bit rough but you get the idea:
public static T GetThing<T>()
{
List<Type> assemblyTypes = AppDomain.CurrentDomain.GetAssemblies()
.SelectMany(s => s.GetTypes()).ToList();
Type interfaceType = typeof(T);
if(interfaceType.IsGenericType)
{
var gens = interfaceType.GetGenericArguments();
List<Type> narrowed = assemblyTypes.Where(p => p.IsGenericType && !p.IsInterface).ToList();
var implementations = new List<Type>();
narrowed.ForEach(t=>
{
try
{
var imp = t.MakeGenericType(gens);
if(interfaceType.IsAssignableFrom(imp))
{
implementations.Add(imp);
}
}catch
{
}
});
return (T)Activator.CreateInstance(implementations.First());
}
else
{
List<Type> implementations = assemblyTypes.Where(p => interfaceType.IsAssignableFrom(p) && !p.IsInterface).ToList();
return (T)Activator.CreateInstance(implementations.First());
}
}