Space-efficient way to encode numbers as sortable strings - string

Starting with a list of integers the task is to convert each integer into a string such that the resulting list of strings will be in numeric order when sorted lexicographically.
This is needed so that a particular system that is only capable of sorting strings will produce an output that is in numeric order.
Example:
Given the integers
1, 23, 3
we could convert the to strings like this:
"01", "23", "03"
so that when sorted they become:
"01", "03", "23"
which is correct. A wrong result would be:
"1", "23", "3"
because that list is sorted in "string order", not in numeric order.
I'm looking for something more efficient than the simple zero-padding scheme. In order to cover all possible 32 bit integers we'd need to pad to 10 digits which is inefficient.

For integers, prefix each number with the length. To make it more readable, use 'a' for length 1, and 'b' for length 2. Example:
non-encoded encoded
1 "a1"
3 "a3"
23 "b23"
This scheme is a bit simpler than prefixing each digit, but only works with numbers, not numbers mixed with text. It can be made to work for negative numbers as well, and even BigDecimal numbers, using some tricks. I wrote an implementation in Apache Jackrabbit 2.x, to make BigDecimal indexable (sortable) as text. For that, I used a format that only uses the characters '0' to '9' and consists of:
one character for: signum(value) + 2
one character for: signum(exponent) + 2
one character for: length(exponent) - 1
multiple characters for: exponent
multiple characters for: value (-1 if inverted)
Only the signum is encoded if the value is zero. The exponent is not encoded if zero. Negative values are "inverted" character by character (0 => 9, 1 => 8, and so on). The same applies to the exponent.
Examples:
non-encoded encoded
0 "2"
2 "322" (signum 1; exponent 0; value 2)
120 "330212" (signum 1; exponent signum 1, length 1, value 2; value 12)
-1 "179" (signum -1, rest inverted; exponent 0; value 1 (-1, inverted))
Values between BigDecimal(BigInteger.ONE, Integer.MIN_VALUE) and BigDecimal(BigInteger.ONE, Integer.MAX_VALUE) are supported.

TL;DR
Encode digits according to their order of magnitude (OM) and other characters so they sort as desired, relative to numbers: jj-a123 would be encoded zjzjz-zaC1B2A3
Longer explanation
This would depend somewhat upon the sorting algorithm that will finally be used to sort and how one would want any given punctuation characters to be sorted in relation to letters and numbers, but if it's "ascii-betical" or similar, you could encode each digit of a number to represent its order of magnitude (OM) in the number, while encoding other characters such that they would sort according to your desired sort order.
For simplicity, I would suggest beginning with encoding every non-numeric character with a "high" value (e.g. lower case z or even ~ if final value is ASCII), so that it sorts after encoded digits. Then cache each digit encountered until another non-numeric is encountered, then encode each cached digit with a value representing its OM. If the number 12945 was encountered in between non-numerics, you would output an E to encode an OM of 5, then the digit that is that order of magnitude, 1, followed by the next OM of 4 (D) and its associated digit, 2. Continue until all numeric digits have been flushed, then continue with non-numerics.
Non-numerics would be treated individually and ranked relative to the OM of digits. If it is desired for them to sort "above" numbers (perhaps the space character or certain others deemed special) they would be encoded by prepending a low-value character (like the space character, if final value will be treated and sorted as ASCII). When/if another numeric is encountered, begin caching and encode according to OM once all consecutive numerics are cached.
Alternately, processing the string in reverse order would preclude the need to cache numbers except for a single "is it a digit?" test and "is the last character a digit?" test. If the first is not true, then use (one of?) the "non-digit" OM character(s). If the first test is true then use the lowest-OM "digit" character (A in my examples). If both tests are true, then increment your OM character (A -> B or E -> F) before use.
Certain levels of additional filtering - or even translation - could be applied. If one wanted to allow accurate sorting based upon Roman numerals, one could encode them as decimal (or even hexadecimal) numbers with an appropriate OM.
Treating decimal points (either periods or commas, depending) as actual decimal separators, and distinct from other punctuation would probably be beyond the true utility of this encoding scheme, as alphanumeric fields seldom use a period or comma as a decimal separator. If it is desired to use them that way, the algorithm would simply detect a decimal separator (either period or comma as appropriate, in between digits) and not encode the numeric portion after that separator as anything but normal text. Fractional portions are actually sorted correctly during a normal ASCII based sort, because more digits represents greater precision - not greater magnitude.
Examples
non-encoded encoded
----------- -------
12345 E1D2C3B4A5
a100 zaC1B0A0
a20 zaB2A0
a2000 zaD2C0B0A0
x100.5 zxC1B0A0z.A5
x100.23 zxC1B0A0z.B2A3
1, 23, 3 A1z,z B2A1z,z A3
1, 2, 3 A1z,z A2z,z A3
1,2,3 A1z,A2z,A3
Potential advantages
Going somewhat beyond simple numeric sorting, some advantages to this encoding method would be several aspects of flexibility with final effective sort order - you are essentially encoding a category for each character - digits get a category based upon their position within the greater string of digits known as a number, while other characters are simply told to sort in their normal way (e.g. ASCII), but after numbers. Any exceptions that should sort before numbers or in other orders would be in one or more additional categories. ASCII can effectively be re-encoded to sort in a non-ASCII way:
You could encode lower case letters to sort before or along with upper case letters. To switch the lower and upper cases, you encode lower case letters with a y and upper case letters with a z. For a pseudo-case-insensitive sort, categorizing both A and a with the same encoding character would sort both of them before B and b, though A would nonetheless always sort before a
If you want Extended ASCII characters (e.g. with diacritics) to sort along with their ASCII cousins, you encode À, Á, Â, Ã, Ä, Å, and Æ along with A by using an a as the OM character, encode B, C, and Ç with a b, and E, È, É, Ê, and Ë with a c, etc. The same intra-category sort order caveat still applies, and some decisions need to be made on characters like capital Eth, and to a certain extent others like Thorn, and Sharp S (Ð, Þ, and ß respectively) as to whether they will sort based on similarities in appearance or pronunciation, or instead more properly perhaps, alphabetical order.
Small advantage of being basically human-readable, with effort
Caveats
Though this allows many 'categories' of characters to be defined, be sure to remember that each order of magnitude for digits is its own category - you need to know that the data will not contain numbers that are greater in OM than approximately 250, depending upon how many other categories you wish to define (ASCII 0 is reserved for storing strings, and there needs to be at least one other character to indicate "not a digit" - at least for alphanumeric data - making the maximum perhaps 254 orders of magnitude), but that should be plenty for any situation I can imagine. I'm not sure what other issues quantum computing will bring about, but there's probably a quantum solution to it, whatever it is.
Finally, if the hyphen is encoded as a non-numeric character, and all non-numerics are encoded with a higher OM than digits, negative numbers would be encoded as greater than any positive number. The hyphen should be encoded as a lower-than-digit-OM (perhaps only when preceding a digit) if negative numbers need to be sorted correctly according to magnitude.

Since the ASCII code of A is greater than 9, you could encode them as hexadecimal strings.
The integers
1, 23, 3
can be encoded as
00000001, 00000017, 00000003
and 32-bit integers can always be encoded as 8-character strings. (assume unsigned)

Related

Restrict floats to allotted padding while parsing as string

I would like to print a series of floats with varying amounts of numbers to the left of the decimal place. I would like these numbers to exactly fill a padding with blank spaces, digits, and a decimal point.
Paraphrasing the data and code I have now
floats = [321.1234561, 21.1234561, 1.1234561, 0.123456, 0.02345, 0.0034, 0.0004567]
for number in floats:
print('{:>8.6f}'.format(number))
This outputs
321.123456
21.123456
1.123456
0.123456
0.02345
0.0034
0.000457
I am looking for a way to print the following in a for loop assuming I don't know the amount of digits that will be to the left of the decimal place and the number of digits to the left never exceeds the padding which is 8 for this example.
321.1234
21.12345
1.123456
0.123456
0.02345
0.0034
0.000457
Similar questions have been asked about printing floating points with a certain width but the width they were talking about appeared to be the precision rather than the total number of character used to print the number.
Edit:
I have added a number to the end of the list for the following reason. The use of the specifier 'g' with 7 significant figures was recommended by attdona. This prevents the padding from being exceeded for numbers greater than or equal to 1 but not for numbers less than 1 with precision greater than 6. Using {:>8.7g} instead gives
321.1234
21.12345
1.123456
0.123456
0.02345
0.0034
0.0004567
Where the only one that exceeds the padding is the newly added one.
Use the General format type specifier g:
'{:>8.7g}'.format(number)
reference: https://docs.python.org/3/library/string.html#format-specification-mini-language
Update: For small numbers this format fails to align correctly. In this case you may adopt a mixed approach, but keep in mind that very small numbers will round to zero
for number in floats:
fstr = '{:>8.7g}'.format(number)
if len(fstr) > 8:
fstr = '{:>8.6f}'.format(number)
print(fstr)
for i in floats:
print('{:>8}'.format(f'{i:{8}.{8-len(str(int(i)))-1}f}'.rstrip('0')))
321.1235
21.12346
1.123456
0.123456
0.02345
0.0034

Writing null-terminated string "R5" in hexadecimal, etc

This is supposed to be a low-level course, and it is only the third day of class. However, we are asked to "Write the null-terminated string 'R5' in hexadecimal, binary, and octal notations. Assume that ASCII code is used"
I have no idea where to go to learn how to do this. Any suggestions? Thanks.
NULL-terminated ASCII strings are stored with one byte per character, plus one byte for the NULL. You would therefore be printing three bytes - 'R', '5', and 0.
Look up 'R' and '5' on an ASCII chart to see what the numeric values are for those characters in ASCII. Then, write out your three bytes three different ways - one each for hexadecimal, binary and octal.
Hope that helps.
It seems like this just requires you to look up the appropriate entries from the ASCII table, which in most cases lists hex and octal and the characters themselves.
ASCII is a standard way of defining how characters are represented, and most tables will list characters against corresponding hex, decimal, and octal values. The first 128 is standard and the next 128 are the extended characters (those weird characters that don't map to an English keyboard).
If you google "ASCII table" you'll be inundated with different links. The top one I saw at www.asciitable.com appears to have everything you need - except binary.
Most of the times you're not going to see binary listed, but it's fairly academic to translate a hex value into binary - your Windows Calculator will happily do this for you.
To more directly translate your specific string you'll look up each character (including the NULL) separately and translate each individually.
Ultimately to the computer, everything is a number. To represent characters such as letters or symbols, we can agree on an encoding, or a numbering of these characters. For example, we could invent a new encoding where 1 means 'A', 2, means 'B', and so on. ASCII is one commonly used text encoding which maps characters to numbers. In this case, we are concerned with a string of 3 characters: 'R', '5', and null (a null character marks the end of a string. It is represented by the value 0. If you look in an ASCII table, you'll find that the numeric values are 82, 53, and 0.
String: R, 5, <null>
Decimal numbers: 82, 53, 0
Our normal number system is base-10, or decimal. This means that each digit represents a value ten times larger than the next (1, to 10, to 100, to 1000, etc.). Alternate bases include 8 (octal), 16 (hexadecimal), and 2 (binary). There is a straightforward way to convert between bases, although you can also easily find calculators that will do the conversion for you. You may want to review the relevant section of your textbook, or check out the Wikipedia articles. For the example of decimal 82, the hexadecimal value is 52 (this means 5*16 + 2 = 8*10 + 2). Oftentimes you will see a prefix of "0x", this is commonly used to make it clear the following digits are in base 16. (otherwise, you might think "52" refers to the decimal value 52).
Interesting. So would it be correct to say that the null-terminated string "R5" is simply "52, 35, 30" or is there a more correct format to it? Thank you for your patience. –
As I pointed out in another comment, the actual value 0 marks the end of a string, not the value 0x30, which represents a character '0' in the string. Note that the value of zero (0) is the same regardless of which base your numbers are in.
String: R, 5, <null>
Decimal : 82, 53, 0
Hexadecimal: 52, 35, 0

Convert text to numbers while preserving ordering?

I've got a strange requirements, which I can't seem to get my head around. I need to come up with a function that would take a text string and return a number corresponding to that string - in such a way that, when sorted, these numbers would go in the same order as the original strings. For example, if I the function produces this mapping:
"abcd" -> x
"abdef" -> y
"xyz" -> z
then the numbers must be such that x < y < z. The strings can be arbitrary length, but always non-empty and the string comparison should be case-insensitive (i.e. "ABC" and "abc" should result in the same numerical value).
My first though was to map each letter to a corresponding number 1 through 26 and then just get the resulting number, e.g. a = 1, b = 2, c = 3, ..., z = 26, then "abc" would become 1*26^2 + 2*26 + 3, however then I realised that the text string can contain any text in any language (i.e. full unicode), so this isn't going to work. At this point I'm stuck. Any other ideas before I tell the client to sod off?
P.S. This strange requirement is due to a limitation in a proprietary system that can only do sorting by a numeric field. If the sorting is required by any other field type, it must be converted to some numerical representation - and then sorted. Don't ask.
You can make this work if you allow for arbitrary-precision real numbers, though that kinda feels like cheating. Unicode strings are sequences of characters drawn from 1,114,112 options. You can therefore think of them as decimal base-1,114,113 numbers: write 0., then write out your Unicode string, and you have a real number in base-1,114,113 (shift each character's numeric value up by one so that missing characters have the value 0). Comparing two of these numbers in base-1,114,113 compares the numbers lexicographically: if you scan the digits from left-to-right, the first digit that they disagree on tiebreaks between the two. This approach is completely infeasible unless you have an arbitrary-precision real number library.
If you just have IEEE-734 doubles, this approach won't work. One way to see this is that there are at most 264 possible doubles (or 280 of them if you allow for long doubles) because there are only 64 (80) bits in a double, but there are infinitely many different strings. That eliminates the possibility simply because there are too many strings to go around.
Unfortunately, you can't make this work if you have arbitrary-precision integers. The natural ordering on strings has the fun property that you can find pairs of strings that have infinitely many strings lexicographically between them. For example, notice that
a < ab < aab < aaab < aaaab < ... < b
Now imagine that you have a function that maps each string to an integer that obeys the rules you'd like. That would mean that
f(a) < f(ab) < f(aab) < f(aaab) < f(aaaab) < ... < f(b)
But that's not possible in the integers - you can't have two integers f(a) and f(b) with infinitely many integers between them. (The number of integers between f(a) and f(b) is at most f(b) - f(a) - 1).
So it seems like the answer is "this is possible if you have arbitrary-precision real numbers, it's not possible with doubles, and it's not possible with arbitrary-precision integers." I'd basically label that "not going to happen in practice" even though it's theoretically possible. :-)

What does $ with a numeric value mean in Delphi

What does it means, in Delphi, when I see a command like this:
char($23)
What does the dollar symbol mean in this context?
The dollar symbol represents that the following is a hex value.
ShowMessage(Char($23)); shows #.
The $ symbol is used to prefix a hexadecimal literal. The documentation says:
Numerals
Integer and real constants can be represented in decimal notation as
sequences of digits without commas or spaces, and prefixed with the +
or - operator to indicate sign. Values default to positive (so that,
for example, 67258 is equivalent to +67258) and must be within the
range of the largest predefined real or integer type.
Numerals with decimal points or exponents denote reals, while other
numerals denote integers. When the character E or e occurs within a
real, it means "times ten to the power of". For example, 7E2 means 7 *
10^2, and 12.25e+6 and 12.25e6 both mean 12.25 * 10^6.
The dollar-sign prefix indicates a hexadecimal numeral, for example,
$8F. Hexadecimal numbers without a preceding - unary operator are
taken to be positive values. During an assignment, if a hexadecimal
value lies outside the range of the receiving type an error is raised,
except in the case of the Integer (32-bit integer) where a warning
is raised. In this case, values exceeding the positive range for
Integer are taken to be negative numbers in a manner consistent with two's complement integer representation.
So, in your example, $23 is the number whose hexadecimal representation is 23. That number has decimal representation 35, so you can write:
Assert($23 = 35);
It represents a character. For example char(13) is end of line.

how do you convert a double to a string?

I know that most programming languages have functions built in for doing that for you, but how do those functions work?
The javadoc about the Double toString() method is quite comprehensive:
Creates a string representation of the double argument. All characters mentioned below are ASCII characters.
If the argument is NaN, the result is the string "NaN".
Otherwise, the result is a string that represents the sign and magnitude (absolute value) of the argument. If the sign is negative, the first character of the result is '-' ('-'); if the sign is positive, no sign character appears in the result. As for the magnitude m:
If m is infinity, it is represented by the characters "Infinity"; thus, positive infinity produces the result "Infinity" and negative infinity produces the result "-Infinity".
If m is zero, it is represented by the characters "0.0"; thus, negative zero produces the result "-0.0" and positive zero produces the result "0.0".
If m is greater than or equal to 10^-3 but less than 10^7, then it is represented as the integer part of m, in decimal form with no leading zeroes, followed by '.' (.), followed by one or more decimal digits representing the fractional part of m.
If m is less than 10^-3 or not less than 10^7, then it is represented in so-called "computerized scientific notation." Let n be the unique integer such that 10^n<=m<10^(n+1); then let a be the mathematically exact quotient of m and 10^n so that 1<=a<10. The magnitude is then represented as the integer part of a, as a single decimal digit, followed by '.' (.), followed by decimal digits representing the fractional part of a, followed by the letter 'E' (E), followed by a representation of n as a decimal integer, as produced by the method Integer.toString(int).
How many digits must be printed for the fractional part of m or a? There must be at least one digit to represent the fractional part, and beyond that as many, but only as many, more digits as are needed to uniquely distinguish the argument value from adjacent values of type double. That is, suppose that x is the exact mathematical value represented by the decimal representation produced by this method for a finite nonzero argument d. Then d must be the double value nearest to x; or if two double values are equally close to x, then d must be one of them and the least significant bit of the significand of d must be 0.
Is that enough? Otherwise you might like to look up the implementation too...
A simple (but non-generic, naïve and slow way):
convert the number to an integer, then divide this value by 10 stepwise to find out its digits in reverse order. Concatenate them together and you have the integer representation.
substract the integer from the original number, now multiply by 10 stepwise and find the digits after the decimal point. Concatenate the first string with a point and this second string.
This has a few problems, of course:
slow as hell;
doesn't work for negative numbers;
won't give you exponential notation for very small or large numbers.
All in all, it's an idea, but not a very good one; I suspect there are no programming languages that do this.
This paper by Guy Steele provides details on how to do this correctly. It's much more subtle than you might think.
http://portal.acm.org/citation.cfm?id=93559
"Printing Floating-Point Numbers Quickly and Accurately" - Robert G. Burger
Scheme and C code for above.
As Oded mentioned in a comment, different languages will do this in different ways. As an example, here's how Ruby 1.9 does it (in C). Your best bet, just as a research exercise, will be to look into open-source languages and see how they do it.

Resources