Why doesn't f=(+) need a type annotation? - haskell

I mean, for example,
f :: (Enum a) => a -> a --without this line, there would be an error
f = succ
It's because succ needs its parameter to be enumerable (succ :: (Enum a) => a -> a)
but for (+)
f = (+) --ok
Though (+)'s declaration is (+) :: (Num a) => a –> a –> a.
I mean, why don't I need to declare f as f :: (Num a) => a –> a –> a?

Because of defaulting. Num is a 'defaultable' type class, meaning that if you leave it un-constrained, the compiler will make a few intelligent guesses as to which type you meant to use it as. Try putting that definition in a module, then running
:t f
in ghci; it should tell you (IIRC) f :: Integer -> Integer -> Integer. The compiler didn't know which a you wanted to use, so it guessed Integer; and since that worked, it went with that guess.
Why didn't it infer a polymorphic type for f? Because of the dreaded[1] monomorphism restriction. When the compiler sees
f = (+)
it thinks 'f is a value', which means it needs a single (monomorphic) type. Eta-expand the definition to
f x = (+) x
and you will get the polymorphic type
f :: Num a => a -> a -> a
and similarly if you eta-expand your first definition
f x = succ x
you don't need a type signature any more.
[1] Actual name from the GHC documentation!

I mean, why don't I need to declare f as (+) :: (Num a) => a –> a –> a?
You do need to do that, if you declare the signature of f at all. But if you don't, the compiler will “guess” the signature itself – in this case this isn't all to remarkable since it can basically just copy&paste the signature of (+). And that's precisely what it will do.
...or at least what it should do. It does, provided you have the -XNoMonomorphism flag on. Otherwise, well, the dreaded monomorphism restriction steps in because f's definition is of the shape ConstantApplicativeForm = Value; that makes the compiler dumb down the signature to the next best non-polymorphic type it can find, namely Integer -> Integer -> Integer. To prevent this, you should in fact supply the right signature by hand, for all top-level functions. That also prevents a lot of confusion, and many errors become way less confusing.
The monomorphism restriction is the reason
f = succ
won't work on its own: because it also has this CAF shape, the compiler does not try to infer the correct polymorphic type, but tries to find some concrete instantiation to make a monomorphic signature. But unlike Num, the Enum class does not offer a default instance.
Possible solutions, ordered by preference:
Always add signatures. You really should.
Enable -XNoMonomorphismRestriction.
Write your function definitions in the form f a = succ a, f a b = a+b. Because there are explicitly mentioned arguments, these don't qualify as CAF, so the monomorphism restriction won't kick in.

Haskell defaults Num constraints to Int or Integer, I forget which.

Related

Why is `succ i` valid where `i :: Num a => a` (and not an `Enum a`)?

This seems to apply to both GHCi and GHC. I'll show an example with GHCi first.
Given i type has been inferred as follows:
Prelude> i = 1
Prelude> :t i
i :: Num p => p
Given that succ is a function defined on Enum:
Prelude> :i Enum
class Enum a where
succ :: a -> a
pred :: a -> a
-- …OMITTED…
and that Num is not a 'subclass' (if I can use that term) of Enum:
class Num a where
(+) :: a -> a -> a
(-) :: a -> a -> a
-- …OMITTED…
why succ i does not return an error?
Prelude> succ i
2 -- works, no error
I would expect :type i to be inferred to something like:
Prelude> i = 1
Prelude> :type i
i :: (Enum p, Num p) => p
(I'm using 'GHC v. 8.6.3')
ADDITION:
After reading #RobinZigmond comment and #AlexeyRomanov answer I have noticed that 1 could be interpreted as one of many types and one of many classes.
Thanks to #AlexeyRomanov answer I understand much more about the defaulting-rules used to decide what type to use for ambiguous expressions.
However I don't feel that Alexey answer addresses exactly my question. My question is about the type of i. It's not about the type of succ i.
It's about the mismatch between succ argument type (an Enum a) and the apparent type of i (a Num a).
I'm now starting to realise that my question must stem from a wrong assumption: 'that once i is inferred to be i :: Num a => a, then i can be nothing else'. Hence I was puzzled to see succ i was evaluated without errors.
GHC also seems to be inferring Enum a in addition to what was explicitly declared.
x :: Num a => a
x = 1
y = succ x -- works
However it is not adding Enum a when the type variable appears as a function:
my_succ :: Num a => a -> a
my_succ z = succ z -- fails compilation
To me it seems that the type constraints attached to a function are stricter to the ones applied to a variable.
GHC is saying my_succ :: forall a. Num a => a -> a and given
forall a doesn't appear in the type-signature of neither i nor x I thought that meant GHC is not going to infer any more classes for my_succ types.
But this seems again wrong: I've checked this idea with the following (first time I type RankNTypes) and apparently GHC still infers Enum a:
{-# LANGUAGE RankNTypes #-}
x :: forall a. Num a => a
x = 1
y = succ x
So it seems that inference rules for functions are stricter than the ones for variables?
Yes, succ i's type is inferred as you expect:
Prelude> :t succ i
succ i :: (Enum a, Num a) => a
This type is ambiguous, but it satisfies the conditions in the defaulting rules for GHCi:
Find all the unsolved constraints. Then:
Find those that are of form (C a) where a is a type variable, and partition those constraints into groups that share a common type variable a.
In this case, there's only one group: (Enum a, Num a).
Keep only the groups in which at least one of the classes is an interactive class (defined below).
This group is kept, because Num is an interactive class.
Now, for each remaining group G, try each type ty from the default-type list in turn; if setting a = ty would allow the constraints in G to be completely solved. If so, default a to ty.
The unit type () and the list type [] are added to the start of the standard list of types which are tried when doing type defaulting.
The default default-type list (sic) is (with the additions from the last clause) default ((), [], Integer, Double).
So when you do Prelude> succ i to actually evaluate this expression (note :t doesn't evaluate the expression it gets), a is set to Integer (first of this list satisfying the constraints), and the result is printed as 2.
You can see it's the reason by changing the default:
Prelude> default (Double)
Prelude> succ 1
2.0
For the updated question:
I'm now starting to realise that my question must stem from a wrong assumption: 'that once i is inferred to be i :: Num a => a, then i can be nothing else'. Hence I was puzzled to see succ i was evaluated without errors.
i can be nothing else (i.e. nothing that doesn't fit this type), but it can be used with less general (more specific) types: Integer, Int. Even with many of them in an expression at once:
Prelude> (i :: Double) ^ (i :: Integer)
1.0
And these uses don't affect the type of i itself: it's already defined and its type fixed. OK so far?
Well, adding constraints also makes the type more specific, so (Num a, Enum a) => a is more specific than (Num a) => a:
Prelude> i :: (Num a, Enum a) => a
1
Because of course any type a that satisfies both constraints in (Num a, Enum a) satisfies just Num a.
However it is not adding Enum a when the type variable appears as a function:
That's because you specified a signature which doesn't allow it to. If you don't give a signature, there's no reason to infer Num constraint. But e.g.
Prelude> f x = succ x + 1
will infer the type with both constraints:
Prelude> :t f
f :: (Num a, Enum a) => a -> a
So it seems that inference rules for functions are stricter than the ones for variables?
It's actually the other way around due to the monomorphism restriction (not in GHCi, by default). You've actually been a bit lucky not to run into it here, but the answer is already long enough. Searching for the term should give you explanations.
GHC is saying my_succ :: forall a. Num a => a -> a and given forall a doesn't appear in the type-signature of neither i nor x.
That's a red herring. I am not sure why it's shown in one case and not the other, but all of them have that forall a behind the scenes:
Haskell type signatures are implicitly quantified. When the language option ExplicitForAll is used, the keyword forall allows us to say exactly what this means. For example:
g :: b -> b
means this:
g :: forall b. (b -> b)
(Also, you just need ExplicitForAll and not RankNTypes to write down forall a. Num a => a.)

Why is a function type required to be "wrapped" for the type checker to be satisfied?

The following program type-checks:
{-# LANGUAGE RankNTypes #-}
import Numeric.AD (grad)
newtype Fun = Fun (forall a. Num a => [a] -> a)
test1 [u, v] = (v - (u * u * u))
test2 [u, v] = ((u * u) + (v * v) - 1)
main = print $ fmap (\(Fun f) -> grad f [1,1]) [Fun test1, Fun test2]
But this program fails:
main = print $ fmap (\f -> grad f [1,1]) [test1, test2]
With the type error:
Grad.hs:13:33: error:
• Couldn't match type ‘Integer’
with ‘Numeric.AD.Internal.Reverse.Reverse s Integer’
Expected type: [Numeric.AD.Internal.Reverse.Reverse s Integer]
-> Numeric.AD.Internal.Reverse.Reverse s Integer
Actual type: [Integer] -> Integer
• In the first argument of ‘grad’, namely ‘f’
In the expression: grad f [1, 1]
In the first argument of ‘fmap’, namely ‘(\ f -> grad f [1, 1])’
Intuitively, the latter program looks correct. After all, the
following, seemingly equivalent program does work:
main = print $ [grad test1 [1,1], grad test2 [1,1]]
It looks like a limitation in GHC's type system. I would like to know
what causes the failure, why this limitation exists, and any possible
workarounds besides wrapping the function (per Fun above).
(Note: this is not caused by the monomorphism restriction; compiling
with NoMonomorphismRestriction does not help.)
This is an issue with GHC's type system. It is really GHC's type system by the way; the original type system for Haskell/ML like languages don't support higher rank polymorphism, let alone impredicative polymorphism which is what we're using here.
The issue is that in order to type check this we need to support foralls at any position in a type. Not only bunched all the way at the front of the type (the normal restriction which allows for type inference). Once you leave this area type inference becomes undecidable in general (for rank n polymorphism and beyond). In our case, the type of [test1, test2] would need to be [forall a. Num a => a -> a] which is a problem considering that it doesn't fit into the scheme discussed above. It would require us to use impredicative polymorphism, so called because a ranges over types with foralls in them and so a could be replaced with the type in which it's being used.
So, therefore there's going to be some cases that misbehave just because the problem is not fully solvable. GHC does have some support for rank n polymorphism and a bit of support for impredicative polymorphism but it's generally better to just use newtype wrappers to get reliable behavior. To the best of my knowledge, GHC also discourages using this feature precisely because it's so hard to figure out exactly what the type inference algorithm will handle.
In summary, math says that there will be flaky cases and newtype wrappers are the best, if somewhat dissatisfying way, to cope with it.
The type inference algorithm will not infer higher rank types (those with forall at the left of ->). If I remember correctly, it becomes undecidable. Anyway, consider this code
foo f = (f True, f 'a')
what should its type be? We could have
foo :: (forall a. a -> a) -> (Bool, Char)
but we could also have
foo :: (forall a. a -> Int) -> (Int, Int)
or, for any type constructor F :: * -> *
foo :: (forall a. a -> F a) -> (F Bool, F Char)
Here, as far as I can see, we can not find a principal type -- a type which is the most general type we can assign to foo.
If a principal type does not exist, the type inference machinery can only pick a suboptimal type for foo, which can cause type errors later on. This is bad. Instead, GHC relies on a Hindley-Milner style type inference engine, which was greatly extended so to cover more advanced Haskell types. This mechanism, unlike plain Hindley-Milner, will assign f a polymorphic type provided the user explicitly required that, e.g. by giving foo a signature.
Using a wrapper newtype like Fun also instructs GHC in a similar way, providing the polymorphic type for f.

Relationship between Haskell's 'forall' and '=>'

I'm having trouble wrapping my mind around the relationship (and interactions) between Haskell's forall and => (and for that matter the . that often connects them).
For example
λ> :t (+)
λ> :t id
give
(+) :: forall a. Num a => a -> a -> a
id :: forall a. a -> a
and while I understand how these work in these specific cases, I'm not comfortable parsing the expressions (signatures?) forall a. Num a => or forall a. themselves into something meaningful, or that I can generally understand in more complex contexts.
What do forall a. Num a => and forall a. mean? Specifically, what is the roles played in each by forall, => and a?
(As another perspective, without invoking the "implicit dictionary passing" implementation of type classes):
forall a. in Haskell means "for every type a".1 It's introducing a type variable, and declaring that the rest of the type expression has to be valid whatever choice is made for a.
You usually don't see it in basic Haskell (without turning on any extensions in GHC), because it's not necessary; you just use type variables in your type signature, and GHC automatically assumes there are foralls introducing those variables at the start of the expression.
For example:
zip :: forall a. ( forall b. ( [a] -> [b] -> [(a, b)] ))
zip :: forall a. forall b. [a] -> [b] -> [(a, b)]
zip :: forall a b. [a] -> [b] -> [(a, b)]
zip :: [a] -> [b] -> [(a, b)]
The above are all the same; they just tell us that zip can be a way of zipping a list of a together with a list of b to make a list of (a, b) pairs, whatever choice we feel like making for a and b.
forall mainly comes into play with extensions, because then you can introduce type variables with scopes other than the default ones assumed by GHC if you don't explicitly write them.
Now, the constraints => type syntax can be read roughly as "these constraints imply this type", or "provided these constraints hold, you can use this type". It's used all the time, even in vanilla Haskell with no extensions, so it's important to understand what it means and how it works and not just copy and paste and hope.
The => arrow allows us to state a set of constraints on the variables in the rest of the type expression; it lets us put limitations on what choices can be made to introduce the type variable. You should read it first by ignoring everything left of the => arrow, and reading the the right part on its own. This gives you the "shape" of the type. The stuff to the left of the => arrow tells you what kind of types you can use the rest of the type with.
An example:
(+) :: Num a => a -> a -> a
This means that (+) is exactly the same kind of thing as anything with a simpler type like a -> a -> a, except the Num a => is telling us that we're not free to choose any type a. We can only choose a type for a when we know that it is a member of the Num type class (another slightly more precise way of saying "a is a member of Num is "the constraint Num a holds").
Note that GHC is still assuming that there's an implicit forall a to introduce the type variable a here, so it really looks like:
(+) :: forall a. Num a => a -> a -> a
In which case you can read this off moderately easily as an English sentence once you know what forall a. and Num a => means: "For every type a, provided Num a holds, plus has the type a -> a -> a".
1 If you're familiar with formal logic at all, it's just an ASCII-friendly way of writing ∀a, a "universally quantified variable".
As the forall matter appears to be settled, I'll attempt to explain the => a bit. The things to the left of the => are arguments, much like ones to the left of a ->. But you don't apply these arguments manually, and they can only have specific types.
f :: Num a => a -> a
is a function that takes two arguments:
A Num a dictionary.
An a.
When you apply f, you just provide the a. GHC has to provide the Num a. If it's applied to a specific concrete type like Int, GHC knows Num Int and can supply it at the call site. Otherwise, it checks that Num a is provided by some outer context and uses that one. The great thing about Haskell's typeclass system is that it ensures that any two Num a dictionaries, however they are found, will be identical. So it doesn't matter where the dictionary comes from—it is sure to be the right one.
Further discussion
A lot of these things we're talking about aren't exactly part of Haskell so much as they're part of the way GHC interprets Haskell by translation to GHC core, AKA System FC, an extension of the very well-studied System F, AKA the Girard-Reynolds calculus. System FC is an explicitly typed polymorphic lambda calculus with algebraic datatypes, etc., but no type inference, no instance resolution, etc. After GHC checks the types in your Haskell code, it translates that code to System FC by a thoroughly mechanical process. It can do this confidently because the type checker "decorates" the code with all the information the desugarer needs to plumb all the dictionaries around. If you have a Haskell function that looks like
foo :: forall a . Num a => a -> a -> a
foo x y= x + y
then that will translate to something that looks like
foo :: forall a . Num a -> a -> a -> a
foo = /\ (a :: *) -> \ (d :: Num a) -> \ (x :: a) -> \ (y :: a) -> (+) #a d x y
The /\ is a type lambda—it's just line a normal lambda except it takes a type variable. The # represents application of a type to a function that takes one. The + is really just a record selector. It chooses the right field from the dictionary it's passed.
I suppose it helps if we add the implied parentheses:
(+) :: ∀ a . ( Num a => (a -> (a -> a)) )
id :: ∀ a . ( a -> a )
The ∀ always goes together with a .. It's basically special syntax meaning “anything between ∀ and . are type variables that I want to introduce into the following scope”†
=> denotes what Idris calls an implicit function: Num a is a dictionary for the instance Num a, and such a dictionary is implicitly needed whenever you're adding numbers. But whether a is a type variable here that was previously introduced by some ∀, or a fixed type, doesn't really matter. You could also have
(+) :: Num Int => Int -> Int -> Int
That's just superfluous, because the compiler knows that Int is a Num instance and hence automatically (implicitly!) chooses the right dictionary.
Really, there's no particular relationship between ∀ and =>, they just happen to be used often together.
†Actually this is a type-level lambda. The type expression ∀ a . b behaves analogously to the value level expression \a -> b.

Polymorphic signature for non-polymorphic function: why not?

As an example, consider the trivial function
f :: (Integral b) => a -> b
f x = 3 :: Int
GHC complains that it cannot deduce (b ~ Int). The definition matches the signature in the sense that it returns something that is Integral (namely an Int). Why would/should GHC force me to use a more specific type signature?
Thanks
Type variables in Haskell are universally quantified, so Integral b => b doesn't just mean some Integral type, it means any Integral type. In other words, the caller gets to pick which concrete types should be used. Therefore, it is obviously a type error for the function to always return an Int when the type signature says I should be able to choose any Integral type, e.g. Integer or Word64.
There are extensions which allow you to use existentially quantified type variables, but they are more cumbersome to work with, since they require a wrapper type (in order to store the type class dictionary). Most of the time, it is best to avoid them. But if you did want to use existential types, it would look something like this:
{-# LANGUAGE ExistentialQuantification #-}
data SomeIntegral = forall a. Integral a => SomeIntegral a
f :: a -> SomeIntegral
f x = SomeIntegral (3 :: Int)
Code using this function would then have to be polymorphic enough to work with any Integral type. We also have to pattern match using case instead of let to keep GHC's brain from exploding.
> case f True of SomeIntegral x -> toInteger x
3
> :t toInteger
toInteger :: Integral a => a -> Integer
In the above example, you can think of x as having the type exists b. Integral b => b, i.e. some unknown Integral type.
The most general type of your function is
f :: a -> Int
With a type annotation, you can only demand that you want a more specific type, for example
f :: Bool -> Int
but you cannot declare a less specific type.
The Haskell type system does not allow you to make promises that are not warranted by your code.
As others have said, in Haskell if a function returns a result of type x, that means that the caller gets to decide what the actual type is. Not the function itself. In other words, the function must be able to return any possible type matching the signature.
This is different to most OOP languages, where a signature like this would mean that the function gets to choose what it returns. Apparently this confuses a few people...

Why can't I add Integer to Double in Haskell?

Why is it that I can do:
1 + 2.0
but when I try:
let a = 1
let b = 2.0
a + b
<interactive>:1:5:
Couldn't match expected type `Integer' with actual type `Double'
In the second argument of `(+)', namely `b'
In the expression: a + b
In an equation for `it': it = a + b
This seems just plain weird! Does it ever trip you up?
P.S.: I know that "1" and "2.0" are polymorphic constants. That is not what worries me. What worries me is why haskell does one thing in the first case, but another in the second!
The type signature of (+) is defined as Num a => a -> a -> a, which means that it works on any member of the Num typeclass, but both arguments must be of the same type.
The problem here is with GHCI and the order it establishes types, not Haskell itself. If you were to put either of your examples in a file (using do for the let expressions) it would compile and run fine, because GHC would use the whole function as the context to determine the types of the literals 1 and 2.0.
All that's happening in the first case is GHCI is guessing the types of the numbers you're entering. The most precise is a Double, so it just assumes the other one was supposed to be a Double and executes the computation. However, when you use the let expression, it only has one number to work off of, so it decides 1 is an Integer and 2.0 is a Double.
EDIT: GHCI isn't really "guessing", it's using very specific type defaulting rules that are defined in the Haskell Report. You can read a little more about that here.
The first works because numeric literals are polymorphic (they are interpreted as fromInteger literal resp. fromRational literal), so in 1 + 2.0, you really have fromInteger 1 + fromRational 2, in the absence of other constraints, the result type defaults to Double.
The second does not work because of the monomorphism restriction. If you bind something without a type signature and with a simple pattern binding (name = expresion), that entity gets assigned a monomorphic type. For the literal 1, we have a Num constraint, therefore, according to the defaulting rules, its type is defaulted to Integer in the binding let a = 1. Similarly, the fractional literal's type is defaulted to Double.
It will work, by the way, if you :set -XNoMonomorphismRestriction in ghci.
The reason for the monomorphism restriction is to prevent loss of sharing, if you see a value that looks like a constant, you don't expect it to be calculated more than once, but if it had a polymorphic type, it would be recomputed everytime it is used.
You can use GHCI to learn a little more about this. Use the command :t to get the type of an expression.
Prelude> :t 1
1 :: Num a => a
So 1 is a constant which can be any numeric type (Double, Integer, etc.)
Prelude> let a = 1
Prelude> :t a
a :: Integer
So in this case, Haskell inferred the concrete type for a is Integer. Similarly, if you write let b = 2.0 then Haskell infers the type Double. Using let made Haskell infer a more specific type than (perhaps) was necessary, and that leads to your problem. (Someone with more experience than me can perhaps comment as to why this is the case.) Since (+) has type Num a => a -> a -> a, the two arguments need to have the same type.
You can fix this with the fromIntegral function:
Prelude> :t fromIntegral
fromIntegral :: (Num b, Integral a) => a -> b
This function converts integer types to other numeric types. For example:
Prelude> let a = 1
Prelude> let b = 2.0
Prelude> (fromIntegral a) + b
3.0
Others have addressed many aspects of this question quite well. I'd like to say a word about the rationale behind why + has the type signature Num a => a -> a -> a.
Firstly, the Num typeclass has no way to convert one artbitrary instance of Num into another. Suppose I have a data type for imaginary numbers; they are still numbers, but you really can't properly convert them into just an Int.
Secondly, which type signature would you prefer?
(+) :: (Num a, Num b) => a -> b -> a
(+) :: (Num a, Num b) => a -> b -> b
(+) :: (Num a, Num b, Num c) => a -> b -> c
After considering the other options, you realize that a -> a -> a is the simplest choice. Polymorphic results (as in the third suggestion above) are cool, but can sometimes be too generic to be used conveniently.
Thirdly, Haskell is not Blub. Most, though arguably not all, design decisions about Haskell do not take into account the conventions and expectations of popular languages. I frequently enjoy saying that the first step to learning Haskell is to unlearn everything you think you know about programming first. I'm sure most, if not all, experienced Haskellers have been tripped up by the Num typeclass, and various other curiosities of Haskell, because most have learned a more "mainstream" language first. But be patient, you will eventually reach Haskell nirvana. :)

Resources