Convert an String to an array of int8 - string

I have an C struct (old library, blah blah blah) which contains an C string, now I need to convert CFString and Swift strings into this c string. Something like
struct Product{
char name[50];
char code[20];
}
So I'm trying to assign it as
productName.getCString(&myVarOfStructProduct.name, maxLength: 50, encoding: NSUTF8StringEncoding)
but the compiler is giving me the following error: cannot convert type (int8, int8, int8....) to [CChar].

A possible solution:
withUnsafeMutablePointer(&myVarOfStructProduct.name) {
strlcpy(UnsafeMutablePointer($0), productName, UInt(sizeofValue(myVarOfStructProduct.name)))
}
Inside the block, $0 is a (mutable) pointer to the tuple. This pointer is
converted to an UnsafeMutablePointer<Int8> as expected by the
BSD library function strlcpy().
It also uses the fact that the Swift string productName is automatically
to UnsafePointer<UInt8>
as explained in String value to UnsafePointer<UInt8> function parameter behavior. As mentioned in the comments in that
thread, this is done by creating a temporary UInt8 array (or sequence?).
So alternatively you could enumerate the UTF-8 bytes explicitly and put them
into the destination:
withUnsafeMutablePointer(&myVarOfStructProduct.name) {
tuplePtr -> Void in
var uint8Ptr = UnsafeMutablePointer<UInt8>(tuplePtr)
let size = sizeofValue(myVarOfStructProduct.name)
var idx = 0
if size == 0 { return } // C array has zero length.
for u in productName.utf8 {
if idx == size - 1 { break }
uint8Ptr[idx++] = u
}
uint8Ptr[idx] = 0 // NUL-terminate the C string in the array.
}
Yet another possible solution (with an intermediate NSData object):
withUnsafeMutablePointer(&myVarOfStructProduct.name) {
tuplePtr -> Void in
let tmp = productName + String(UnicodeScalar(0)) // Add NUL-termination
let data = tmp.dataUsingEncoding(NSUTF8StringEncoding, allowLossyConversion: true)!
data.getBytes(tuplePtr, length: sizeofValue(myVarOfStructProduct.name))
}
Update for Swift 3:
withUnsafeMutablePointer(to: &myVarOfStructProduct.name) {
$0.withMemoryRebound(to: Int8.self, capacity: MemoryLayout.size(ofValue: myVarOfStructProduct.name)) {
_ = strlcpy($0, productName, MemoryLayout.size(ofValue: myVarOfStructProduct.name))
}
}

Related

SwiftUI String display character after character

i need a hint cause i don‘t know how to start.
I want to display a string char after char with a short delay but I’m not sure how to do it.
Should i convert the string into an array and display this array in a ForEach or is it possible to do this with string manipulation?
Thanks for every hint :-)
Michael
Here's an example where you can input a String. It will turn it into an array of Strings (for each character), add them onto the screen using an HStack and Text objects. Each Text has initial .opacity of 0.0 and then a function is called that will loop through each Text, turning the .opacity to 1.0.
struct CharView: View {
var characterArray: [String]
#State var characterLoopIndex: Int = -1
let loopDuration: Double = 0.5
init(input: String) {
characterArray = input.map { String($0) }
}
var body: some View {
HStack(spacing: 0) {
ForEach(characterArray.indices) { index in
Text("\(characterArray[index])")
.opacity(characterLoopIndex >= index ? 1 : 0)
.animation(.linear(duration: loopDuration))
}
}
.onAppear(perform: {
startCharacterAnimation()
})
}
func startCharacterAnimation() {
let timer = Timer.scheduledTimer(withTimeInterval: loopDuration, repeats: true) { (timer) in
characterLoopIndex += 1
if characterLoopIndex >= characterArray.count {
timer.invalidate()
}
}
timer.fire()
}
}
Usage:
CharView(input: "This is a test string")

Access a struct property by its name as a string in Swift

Let's say I have the following struct in Swift:
struct Data {
let old: Double
let new: Double
}
Now I have a class with an array of Data structs:
class MyClass {
var myDataArray: [Data]
}
Now let's say I want to calculate the average of either the old or the new values:
func calculateAverage(oldOrNew: String) -> Double {
var total = 0.0
count = 0
for data in myDataArray {
total += data.oldOrNew
count++
}
return total / Double(count)
}
And then:
let oldAverage = calculateAverage("old")
let newAverage = calculateAverage("new")
But this obviously doesn't work, since oldOrNew is not a member of my struct.
How can I access old or new from "old" or "new" ?
What about this "reflection-less" solution?
struct Data {
let old: Double
let new: Double
func valueByPropertyName(name:String) -> Double {
switch name {
case "old": return old
case "new": return new
default: fatalError("Wrong property name")
}
}
}
Now you can do this
let data = Data(old: 0, new: 1)
data.valueByPropertyName("old") // 0
data.valueByPropertyName("new") // 1
You're looking for key-value-coding (KVC) that is accessing properties by key (path).
Short answer: A struct does not support KVC.
If the struct is not mandatory in your design use a subclass of NSObject there you get KVC and even operators like #avg for free.
class MyData : NSObject {
#objc let old, new: Double
init(old:Double, new:Double) {
self.old = old
self.new = new
}
}
let myDataArray : NSArray = [MyData(old: 1, new: 3), MyData(old:5, new: 9), MyData(old: 12, new: 66)]
let averageOld = myDataArray.value(forKeyPath:"#avg.old")
let averageNew = myDataArray.value(forKeyPath: "#avg.new")
Edit: In Swift 4 a struct does support Swift KVC but the operator #avg is not available
You wouldn't access a struct property by name in Swift any more than you would in C++. You'd provide a block.
Extemporaneous:
func calculateAverage(getter: (Data) -> Double) {
... total += getter(data) ...
}
...
calculateAverage({$0.old})
calculateAverage({$0.new})
Possibly with average {$0.old} being a more natural syntax — the verb isn't really helpful and if you're asserting what it is, not what the computer should do, then omitting the brackets looks fine.

Cannot convert value of type 'Int' to expected argument type 'Index' (aka 'String.CharacterView.Index')

Code:
let x: String = ("abc".substringFromIndex(1))
print(x)
//func tail(s: String) -> String {
// return s.substringFromIndex(1)
//}
//print(tail("abcd"))
This works as expected.
But if I uncomment the last 4 lines, then I get:
Error: cannot convert value of type 'Int' to expected argument type 'Index' (aka 'String.CharacterView.Index')
Really weird.
This is because the subscripting functions in String no longer operate on ints, but on the inner Index type:
extension String {
public typealias Index = String.CharacterView.Index
//...
public subscript (i: Index) -> Character { get }
So you need to grab some Index values. You can achieve this by obtaining the first index in the string (aka the index of the first character), and navigate from there:
func tail(s: String) -> String {
return s.substringFromIndex(s.startIndex.advancedBy(1))
}
Note that the above code no longer compiles in the latest Swift version, I'll leave for historical purposes and for people stuck in earlier Swift.
These days we can write something along the lines of
extension String {
var tail: String { String(self[index(startIndex, offsetBy: 1)...]) }
// or
var tail: String { String(self[index(after: startIndex)...]) }
// or even this
var tail: String { String(dropFirst()) }
}
In Swift 4:
func tail(s: String) -> String {
return String(s.suffix(from: s.index(s.startIndex, offsetBy: 1)))
}

Swap string case - swift

let str = "tHIS is A test"
let swapped_case = "This IS a TEST"
Swift noob here, how to do the second statement programatically?
This function works with all upper/lowercase characters
defined in Unicode, even those from "foreign" languages such as Ä or ć:
func swapCases(_ str : String) -> String {
var result = ""
for c in str.characters { // Swift 1: for c in str {
let s = String(c)
let lo = s.lowercased() //Swift 1 & 2: s.lowercaseString
let up = s.uppercased() //Swift 1 & 2: s.uppercaseString
result += (s == lo) ? up : lo
}
return result
}
Example:
let str = "tHIS is a test ÄöÜ ĂćŒ Α" // The last character is a capital Greek Alpha
let swapped_case = swapCases(str)
print(swapped_case)
// This IS A TEST äÖü ăĆœ α
Use switch statement in-range checks to determine letter case, and use NSString-bridged methods to convert accordingly.
let str = "tHIS is A test"
let swapped_case = "This IS a TEST"
func swapCase(string: String) -> String {
var swappedCaseString: String = ""
for character in string {
switch character {
case "a"..."z":
let uppercaseCharacter = (String(character) as NSString).uppercaseString
swappedCaseString += uppercaseCharacter
case "A"..."Z":
let lowercaseCharacter = (String(character) as NSString).lowercaseString
swappedCaseString += lowercaseCharacter
default:
swappedCaseString += String(character)
}
}
return swappedCaseString
}
swapCase(str)
I'm a bit too late but this works too :-)
let str = "tHIS is A test"
var res = ""
for c in str {
if contains("ABCDEFGHIJKLMNOPQRSTUVWXYZ", c) {
res += "\(c)".lowercaseString
} else {
res += "\(c)".uppercaseString
}
}
res
In Swift 5 I achieved it by creating a function which iterates through each character of the string, and using string methods to change each character I appended each character back into a new variable:
func reverseCase(string: String) -> String {
var newCase = ""
for char in string {
if char.isLowercase {
newCase.append(char.uppercased())
}
else if char.isUppercase {
newCase.append(char.lowercased())
}
else {
newCase.append(char)
}
}
return newCase
}
Then just pass your string through to the function when you call it in a print statement:
print(reverseCase(string: str))
You already have plenty of good succinct answers but here’s an over-elaborate one for fun.
Really this is a job for map – iterate over a collection (in this case String) and do a thing to each element (here, each Character). Except map takes any collection, but only gives you back an array, which you’d have to then turn into a String again.
But here’s a version of map that, given an extensible collection, gives you back that same kind of extensible collection.
(It does have the limitation of needing both collections to contain the same type, but that’s fine for strings. You could make it return a different type, but then you’d have to tell it which type you wanted i.e. map(s, transform) as String which would be annoying)
func map<C: ExtensibleCollectionType>(source: C, transform: (C.Generator.Element) -> C.Generator.Element) -> C {
var result = C()
for elem in source {
result.append(transform(elem))
}
return result
}
Then to write the transform function, first here’s an extension to character similar to the other answers. It does seem quite unsatisfying that you have to convert to a string just to uppercase a character, is there really no good (international characterset-friendly) way to do this?
extension Character {
var uppercaseCharacter: Character {
let s = String(self).uppercaseString
return s[s.startIndex]
}
var lowercaseCharacter: Character {
let s = String(self).lowercaseString
return s[s.startIndex]
}
}
And the function to flip the case. What I wonder is whether this pattern matching is international-friendly. It seems to be – "A"..."Z" ~= "Ä" returns true.
func flipCase(c: Character) -> Character {
switch c {
case "A"..."Z":
return c.lowercaseCharacter
case "a"..."z":
return c.uppercaseCharacter
default:
return c
}
}
Finally:
let s = map("Hello", flipCase)
// s is a String = "hELLO"
I hope this helps. inputString and resultString are the input and output respectively.
let inputString = "Example"
let outputString = inputString.characters.map { (character) -> Character in
let string = String(character)
let lower = string.lowercased()
let upper = string.uppercased()
return (string == lower) ? Character(upper) : Character(lower)
}
let resultString = String(outputString)

Comparing String.Index values

Is it possible to compare two String.Index values in Swift? I'm trying to process a string character by character, and several times I need to check if I am at the end of the string. I've tried just doing
while (currentIndex < string.endIndex) {
//do things...
currentIndex = currentIndex.successor()
}
Which complained about type conversions. Then, I tried defining and overload for < as such:
#infix func <(lhs: String.Index, rhs: String.Index) -> Bool {
var ret = true //what goes here?
return ret
}
Which gets rid of compilation errors, but I have no clue what to do in order to compare lhs and rhs properly. Is this the way I should go about using String.Index, or is there a better way to compare them?
The simplest option is the distance() function:
var string = "Hello World"
var currentIndex = string.startIndex
while (distance(currentIndex, string.endIndex) >= 0) {
println("currentIndex: \(currentIndex)")
currentIndex = currentIndex.successor()
}
Beware distance() has O(N) performance, so avoid it for large strings. However, the entire String class doesn't currently handle large strings anyway — you should probably switch to CFString if performance is critical.
Using an operator overload is a bad idea, but just as a learning exercise this is how you'd do it:
var string = "Hello World"
var currentIndex = string.startIndex
#infix func <(lhs: String.Index, rhs: String.Index) -> Bool {
return distance(lhs, rhs) > 0
}
while (currentIndex < string.endIndex) {
currentIndex = currentIndex.successor()
}
String indexes support = and !=. String indexes are an opaque type, not integers and can not be compared like integers.
Use: if (currentIndex != string.endIndex)
var currentIndex = string.startIndex
while (currentIndex != string.endIndex) {
println("currentIndex: \(currentIndex)")
currentIndex = currentIndex.successor()
}
I believe this REPL/Playground example should illuminate what you (and others) need to know about working with the String.Index concept.
// This will be our working example
let exampleString = "this is a string"
// And here we'll call successor a few times to get an index partway through the example
var someIndexInTheMiddle = exampleString.startIndex
for _ in 1...5 {
someIndexInTheMiddle = someIndexInTheMiddle.successor()
}
// And here we will iterate that string and detect when our current index is relative in one of three different possible ways to the character selected previously
println("\n\nsomeIndexInTheMiddle = \(exampleString[someIndexInTheMiddle])")
for var index: String.Index = exampleString.startIndex; index != exampleString.endIndex; index = index.successor() {
println(" - \(exampleString[index])")
if index != exampleString.startIndex && index.predecessor() == someIndexInTheMiddle {
println("current character comes after someIndexInTheMiddle")
} else if index == someIndexInTheMiddle {
println("current character is the one indicated by someIndexInTheMiddle")
} else if index != exampleString.endIndex && index.successor() == someIndexInTheMiddle {
println("Current character comes before someIndexinTheMiddle")
}
}
Hopefully that provides the necessary information.
Whatever way you decide to iterator over a String, you will immediately want to capture the iteration in a function that can be repeatedly invoked while using a closure applied to each string character. As in:
extension String {
func each (f: (Character) -> Void) {
for var index = self.startIndex;
index < self.endIndex;
index = index.successor() {
f (string[index])
}
}
}
Apple already provides these for C-Strings and will for general strings as soon as they get character access solidified.

Resources