I have been at this for a long time, I cant figure out whats wrong
Haskell just makes me feel so dumb
data Operation
= Nth Integer
fib :: (Integral i, Integral j) => i -> j
fib n | n == 0 = 1
| n == 1 = 1
| n == 2 = 1
| n == 3 = 1
| otherwise = (fib(n-1)+fib(n-2))* fib(n-3) `div` fib(n-4)
main = do
command <- getLine
case command of
Nth op -> show $ fib op
Nothing -> "Invalid operation"
So when the user inputs Nth 9, the fib function needs to get called with n=9 and give the output to the user. I feel like my case control structure is appropriate, but I cant get it to work at all!!!
you are almost complete.
use deriving (Read) for reading String as Operation.
http://en.wikibooks.org/wiki/Haskell/Classes_and_types#Deriving
If you want to handle read error, see How to catch a no parse exception from the read function in Haskell?
data Operation = Nth Integer deriving (Read)
fib :: (Integral i, Integral j) => i -> j
fib n | n == 0 = 1
| n == 1 = 1
| n == 2 = 1
| n == 3 = 1
| otherwise = (fib(n-1)+fib(n-2))* fib(n-3) `div` fib(n-4)
main = do
command <- getLine
print $ case read command of
Nth op -> fib op
Related
I've just started programming in Haskell and to get used to the syntax and general style of the language I've decided to try and solve some basic problems on Project Euler.
However, when I tried to compile my code for Problem 1 in GHC, I received an error:
main = do
sum :: Int -> Int
sum n
| n == 0 = 0
| n `mod` 3 == 0 = n + sum (n - 1)
| n `mod` 5 == 0 = n + sum (n - 1)
| otherwise = sum (n - 1)
print sum 1000
The error message in question:
Problem1.hs:5:9: error: parse error on input `|'
|
5 | | n == 0 = 0
| ^
Other users having this or a similar problem here usually had something syntactically simple wrong with their code, such as having typed == instead of =, or had an indentation error, but I don't know why my code doesn't compile properly.
I don't believe it is related to indentation; I am using VSCode and my tab size is set to 4 spaces, but I have also tried indenting manually by using space, both of which produced the same error.
As #Caramiriel rightfully corrected me, functions cannot be defined in a do-block. I solved this by simply pulling sum out of main, but this left 2 problems in the code:
The function name sum is ambiguous, as it could refer both to the automatically imported function Prelude.sum, or the one I created. To solve this, I simply changed my function name to mySum.
print mySum 1000 does not compile, as this is equivalent to print (mySum) 1000, where both mySum and 1000 are inputs for print. To fix this, I simply added parentheses: print (mySum 1000)
On a less important note, I misread the original question on Project Euler, and it should be print (mySum 999) instead. This leaves me with the following (working!) code:
mySum :: Int -> Int
mySum n
| n == 0 = 0
| n `mod` 3 == 0 = n + mySum (n - 1)
| n `mod` 5 == 0 = n + mySum (n - 1)
| otherwise = mySum (n - 1)
main = do
print (mySum 999)
Actually, functions can be defined in a do block, but you must use a let statement, so the following would work fine:
main = do
let sum :: Int -> Int
sum n
| n == 0 = 0
| n `mod` 3 == 0 = n + sum (n - 1)
| n `mod` 5 == 0 = n + sum (n - 1)
| otherwise = sum (n - 1)
print $ sum 1000
As a matter of style, though, it's unusual to define functions within a do block unless they have to be defined there (because they make reference to a variable defined within the do-block, for example), or if they're obviously utility or convenience functions that wouldn't make sense to use outside the do block.
I am stuck with the variable not in scope: m error.
This is supposed to be a code to sum n numbers in a tail recursion way.
zum :: Integer-> Integer
zum n = add_sum m n where
add_sum :: Integer-> Integer-> Integer
add_sum m n
| n == 0 = m
| otherwise = add_sum (m+n) (n-1)
In the second line of your code
zum n = add_sum m n where
'm' is not defined. Perhaps it was intended that instead of an 'm', there needs to be 0 there.
perhaps cleaner this way?
sum n = go 0 n
where go m 0 = m
go m n = go (m+n) (n-1)
> sum 4
10
So I've been playing with Haskell the past couple of days, and I decided I'd make a basic definition of the Fibonacci sequence. So I wrote this code:
main = do
fib :: (Integral a) => Int -> Int
fib x
| x == 0 = 0
| x == 1 = 1
| x >= 2 = fib (x - 2) + fib (x - 1)
do { print (fib 5) }
And I get an error message saying:
4:17: parse error on input `|'
I suspected tab errors, so I tried every whitespace fix I could find, but I just can't find what's wrong!
EDIT: So I did what people suggested, and I have this code now:
fib :: (Integral a) => Int -> Int
main = do
fib x
| x == 0 = 0
| x == 1 = 1
| x >= 2 = fib (x - 2) + fib (x - 1)
print (fib 5)
And I'm getting the same error.
You should define fib outside of main, not inside it. And then you should remove at least one of the dos from main.
The problem is that you are trying to define the function within do block without actually using any construct for defining things (like let).
Try defining the function outside the block:
fib :: (Integral a) => Int -> Int
fib x | x == 0 = 0
| x == 1 = 1
| x >= 2 = fib (x - 2) + fib (x - 1)
main = print (fib 5)
If you insist on defining the function locally (inside the expression that is formed by statements of the do block):
main = do
let
fib :: (Integral a) => Int -> Int
fib x | x == 0 = 0
| x == 1 = 1
| x >= 2 = fib (x - 2) + fib (x - 1)
print (fib 5)
Notice how let is used to bind a new variable fib to the function you want.
You can also define fib locally to main outside of the do block. Do bear in mind that do is syntactic sugar for the use of various monadic binding functions, and so the syntax accepted within it is not quite the same as that accepted outside it. And, in fact, your main doesn't even require the do block because you just call print rather than chaining any IO actions together.
main = let
fib x | x == 0 = 0
| x == 1 = 1
| x >= 2 = fib (x - 2) + fib (x + 1)
in
print (fib 5)
Or you could use where:
main = print (fib 5)
where
fib x | x == 0 = 0
| x == 1 = 1
| x >= 2 = fib (x - 2) + fib (x + 1)
They're the same, the question is just where the local binding actually goes. let..in gives you a new block where the new bindings are in scope, while where makes its bindings available in the scope of the function it's attached to.
If, as seems eventually likely, you do want a do block as well so you can do multiple IO actions, you can just put that in place of the call to print, like so:
main = let
fib x | x == 0 = 0
| x == 1 = 1
| x >= 2 = fib (x - 2) + fib (x + 1)
in
do print (fib 5)
print (fib 6)
I am working on a program to get the closest prime number by the exponent of 2, this is between an interval.
module Main where
import Data.Char
import System.IO
import Control.Monad (liftM)
data PGetal = G Bool | P Int
instance Show PGetal where
show (P n) = show n
show (G False) = "GEEN PRIEMGETAL GEVONDEN"
mPriem::(Int, Int) -> PGetal
mPriem (x,y) | (x > y) = G False
| (x > 1000000) = G False
| (y > 1000000) = G False
| (null (getAllPriem(x,y))) = G False
| otherwise = P (kleinsteVerschilF(getAllPriem(x,y),1000000,1))
kleinsteVerschilF:: ([Int], Int , Int) -> Int
kleinsteVerschilF ([],_, priemGetal) = priemGetal
kleinsteVerschilF (priem1:priemcss, kleinsteVerschil,priemGetal)=
if(kleinsteVerschil <= kleinsteVerschilMetLijst (priem1,(getMachtenVanTwee(0)),1000000))then kleinsteVerschilF(priemcss, kleinsteVerschil,priemGetal)
else kleinsteVerschilF (priemcss,kleinsteVerschilMetLijst(priem1,(getMachtenVanTwee(0)),1000000), priem1)
kleinsteVerschilMetLijst :: (Int,[Int],Int) -> Int
kleinsteVerschilMetLijst ( _,[],kleinsteVerschil) = kleinsteVerschil
kleinsteVerschilMetLijst (x,tweeMachten1:tweeMachtencss,kleinsteverschil)=
if((abs(x-tweeMachten1)) < kleinsteverschil)
then kleinsteVerschilMetLijst(x,tweeMachtencss, (abs(x-tweeMachten1)))
else kleinsteVerschilMetLijst(x,tweeMachtencss, kleinsteverschil)
getAllPriem :: (Int, Int) ->[Int]
getAllPriem (x,y) = filter isPriem [x..y]
getMachtenVanTwee ::(Int) -> [Int]
getMachtenVanTwee (macht)
|(functieMachtTwee(macht)< 1000000) = (functieMachtTwee(macht)) : (getMachtenVanTwee ((macht+1)))
| otherwise = []
functieMachtTwee:: (Int) -> Int
functieMachtTwee (x) = 2^x
isPriem n = (aantalDelers n)==2
aantalDelers n = telAantalDelersVanaf n 1
telAantalDelersVanaf n kandidaatDeler
| n == kandidaatDeler = 1
| mod n kandidaatDeler == 0
= 1 + telAantalDelersVanaf n (kandidaatDeler+1)
| otherwise
= telAantalDelersVanaf n (kandidaatDeler+1)
aantalDelers2 getal = telDelers getal 1 0
where telDelers n kandidaat teller
| n == kandidaat = 1+teller
| mod n kandidaat == 0
= telDelers n (kandidaat+1) (teller+1)
| otherwise
= telDelers n (kandidaat+1) teller
transform :: [String] -> [PGetal]
transform [] = []
transform (cs:css) =
let (a : b: _ ) = words cs
in (mPriem ((read(a)),(read(b))): transform css)
main :: IO ()
main = do
n <- read `liftM` getLine :: IO Int
lss <- lines `liftM` getContents
let cases = take n lss
let vs = (transform (lss))
putStr $ unlines $ map show vs
When I use the mPriem function, it works fine.
But it needs to work with an input txt file, so I made a .exe file with the ghc command. I also added this .txt file in the folder.
10
1 1
1 3
1 100
200 250
14 16
5 10
20 31
16 50
100 120
5200 7341
When I use in command line this command, it does nothing. There is no output. I can't CTRL+C to stop the program, so I think it crashes. But I don't know what's wrong.
type invoer.txt | programma.exe
Your program works, but is not that efficient and personally I find it not that elegant (sorry :S) because you introduce a lot of "noise". As a result it takes a lot of time before output is written.
If I understand the problem statement correctly, each line (except the first), contains two integers, and you need to count the amount of prime numbers between these two numbers (bounds inclusive?)
First of all, you can do this more elegantly by defining a function: cPrime :: Int -> Int -> Int that takes as input the two numbers and returns the amount of prime numbers:
cPrime :: Int -> Int -> Int
cPrime a b = count $ filter isPrime [a .. b]
You can improve performance by improving your prime checking algorithm. First of all, you do not need to check whether 1 is a divisor, since 1 is always a divisor. Furthermore, you can prove mathematically that there is no divisor greater than sqrt(n) (except for n) that divides n; unless there is another divider that is smaller than sqrt(n). So that means that you can simply enumerate all numbers between 2 and sqrt n and from the moment one of these is a divisor, you can stop: you have proven the number is not prime:
isPrime :: Int -> Bool
isPrime 1 = False
isPrime 2 = True
isPrime n = all ((0 /=) . mod n) (2:[3,5..m])
where m = floor $ sqrt $ fromIntegral n
Now I'm not sure what you aim to do with kleinsteVerschilF.
fib::Int->Int
fib n
n==0 = 1
n>1 = error "Invalid Number"
this function gives me a error
Syntax error in declaration (unexpected symbol "==")
im not sure whats wrong with the function when compare to the reading material it looks the same
You're missing some of the syntax:
fib :: Int -> Int
fib n
| n == 0 = 1
| n > 1 = error "Invalid Number"
This can also be written without the first newline:
fib :: Int -> Int
fib n | n == 0 = 1
| n > 1 = error "Invalid Number"
This function is more naturally expressed with pattern matching:
fib :: Int -> Int
fib 0 = 1
fib n | n > 1 = error "Invalid number"
and you might be interested in the catalogue of fibonaccis.