I am upgrading my thrift api to cql3. My data contains SuperColumns as follows:
- User //column family
- Division/name //my row key
-DivHead //SuperColumn
- name //Columns
- address //Columns
I understand all the column families to be changed to tables. And the primary key becomes the rowkey. So rest are the columns.
But my data has supercolumns. how do I create supercolumns using CQL3?
CREATE TABLE user (
rowkey varchar,
division text,
head_name text,
address text,
PRIMARY KEY (rowkey, division)
)
OR
CREATE TABLE user (
rowkey varchar,
division text,
head_name text,
head_address text,
PRIMARY KEY ((rowkey, division))
)
Under the covers the first example will have each rowkey assigned to the same partition. Each rowkey will have a set of logical rows, one for each division. Those rows will contain two columns: head_name and head_address. You can query based on the rowkey and get all divisions (sorted!). Or you can query a rowkey with a range of divisions or a single division and get a subset of the divisions with their division head and address.
The second example will have one partition for each rowkey and division combination. Each such partition will be one logical row as well. The single row for each composite key will have two columns: head_name and head_address. To make a query, you must provide BOTH the rowkey and the division.
EDIT: Cleared up some bad grammar.
Related
I use the following CQL queries to create a table and write data, the problem is that the data in my table are not organized by date order.
I would like to have them organized by date without having to put the same id.
To create table :
CREATE TABLE IF NOT EXISTS sk1_000.data(id varchar, date_serveur timestamp ,nom_objet varchar, temperature double, etat boolean , PRIMARY KEY (id, date_serveur)) with clustering order by (date_serveur DESC);
To insert :
INSERT INTO sk1_000.data(id, date_serveur,nom_objet, temperature, etat) VALUES ('"+ uuid.v4() +"', '1501488930499','Raspberry_pi', 22.5, true) if not exists ;
Here is the output :
In Cassandra, the clustering key guarantees sort order for a given partition key and not across different partitioning key(s).
To achieve what you are looking for "sort by date across all keys", you will have to redesign the table to have date_serveur as partitioning key and id as clustering column. But guess what you can't directly query based on an id with this table design.
I have a column family and syntax like this:
CREATE TABLE sr_number_callrecord (
id int,
callerph text,
sr_number text,
callid text,
start_time text,
plan_id int,
PRIMARY KEY((sr_number), start_time, callerph)
);
I want to do the query like :
a) select * from dummy where sr_number='+919xxxx8383'
and start_time >='2014-12-02 08:23:18' limit 10;
b) select * from dummy where sr_number='+919xxxxxx83'
and start_time >='2014-12-02 08:23:18'
and callerph='+9120xxxxxxxx0' limit 10;
First query works fine but second query is giving error like
Bad Request: PRIMARY KEY column "callerph" cannot be restricted
(preceding column "start_time" is either not restricted or by a non-EQ
relation)
If I get the result in first query, In second query I am just adding one
more cluster key to get filter result and the row will be less
Just like you cannot skip PRIMARY KEY components, you may only use a non-equals operator on the last component that you query (which is why your 1st query works).
If you do need to serve both of the queries you have listed above, then you will need to have separate query tables for each. To serve the second query, a query table (with the same columns) will work if you define it with a PRIMARY KEY like this:
PRIMARY KEY((sr_number), callerph, start_time)
That way you are still specifying the parts of your PRIMARY KEY in order, and your non-equals condition is on the last PRIMARY KEY component.
There are certain restrictions in the way the primary key columns are to be used in the where clause http://docs.datastax.com/en/cql/3.1/cql/cql_reference/select_r.html
One solution that will work in your situation is to change the order of clustering columns in the primary key
CREATE TABLE sr_number_callrecord (
id int,
callerph text,
sr_number text,
callid text,
start_time text,
plan_id int,
PRIMARY KEY((sr_number), callerph, start_time,)
);
Now you can use range query on the last column as
select * from sr_number_callrecord where sr_number = '1234' and callerph = '+91123' and start_time >= '1234';
In the below table, what is the maximum size phone_numbers column can accommodate ?
Like normal columns, is it 2GB ?
Is it 64K*64K as mentioned here
CREATE TABLE d2.employee (
id int PRIMARY KEY,
doj timestamp,
name text,
phone_numbers map<text, text>
)
Collection types in Cassandra are represented as a set of distinct cells in the internal data model: you will have a cell for each key of your phone_numbers column. Therefore they are not normal columns, but a set of columns. You can verify this by executing the following command in cassandra-cli (1001 stands for a valid employee id):
use d2;
get employee[1001];
The good answer is your point 2.
After reading this blog at planetcassandra, I'm wondering how does a CQL3 composite index with 3 fields map in the thrift column family word, For e.g.:
CREATE TABLE comments (
article_id uuid,
posted_at timestamp,
author text,
karma int,
content text,
PRIMARY KEY (article_id, posted_at)
)
Here the column article_id will be mapped to the internal row key and posted_at will be mapped to (the first part of) the cell name.
What if the table design will be
CREATE TABLE comments (
author_id varchar,
posted_at timestamp,
article_id uuid,
author text,
karma int,
content text,
PRIMARY KEY (author_id, posted_at, article_id)
)
And will the internal row key mapped to 1st 2 fields of the composite index with article_id mapped to cell name, essentially slicing for as many articles upto 2 billion entries and any query on author_id and posted_at combination is one seek on the disk?
Is the behavior same for any number of fields in a composite key?
Your answers much appreciated.
The above observation is incorrect and the correct one is here
I've personally verified:
In the first case:
article_id = partition key, posted_at = cluster key
In the second case:
author_id = partition key, posted_at:article_id = cluster key
First part of composite key (author_id) is called "Partition Key",
rest (posted_at,article_id) are remaining keys.
Cassandra stores columns differently when composite keys are used. Partition key
becomes row key. Remaining keys are concatenated with each column
name (":" as separator) to form column names. Column values remain
unchanged.
Remaining keys (other than partition keys) are ordered,
and it's not allowed to search on any random column, you have to
start with the first one and then you can move to the second one and
so on. This is evident from "Bad Request" error.
There's an excellent explanation by Aaron Morton # his site thelastpickle.
In the first case:
article_id = partition key, posted_at = cluster key
In the second case:
author_id + posted_at = partition key, article_id = cluster key
hence be mindful of the disk seeks as you go by second method and see the row is not getting too wide and gives real benefit compared to the first case.
If you aren't crossing the 2 billion and well within the limits, don't overdo by adopting the 2nd method, as the dispersion of records happens on the combo key.
I'm trying to understand the type used when I create composite columns.
I'm using CQL3 (via cqlsh) to create the CF and then the CLI to issue a describe command.
The Types in the Columns sorted by: ...CompositeType(Type1,Type2,...) are not the ones I'm expecting.
I'm using Cassandra 1.1.6.
CREATE TABLE CompKeyTest1 (
KeyA int,
KeyB int,
KeyC int,
MyData varchar,
PRIMARY KEY (KeyA, KeyB, KeyC)
);
The returned CompositeType is
CompositeType(Int32,Int32,UTF8)
Shouldn't it be (Int32,Int32,Int32)?
CREATE TABLE CompKeyTest2 (
KeyA int,
KeyB varchar,
KeyC int,
MyData varchar,
PRIMARY KEY (KeyA, KeyB, KeyC)
);
The returned CompositeType is
CompositeType(UTF8,Int32,UTF8)
Why isn't it the same as the types used when I define the table? I'm probably missing something basic in the type assignment...
Thanks!
The composite column name is composed of the values of primary keys 2...n and the name of the non-primary key column being saved.
(So if you have 5 non-key fields then you'll have five such columns and their column names will differ only in the last composed value which would be the non-key field name.)
So in both examples the composite column is made up of the values of KeyB, KeyC and the name of the column being stored ("MyData", in both cases). That's why you're seeing those CompositeTypes being returned.
(btw, the first key in the primary key is the partitioning key and its value is only used as the row key (if you're familiar with Cassandra under the covers). It is not used as part of any of the composite column names.)