I would create a finite state automaton that recognizes the language of strings of 0 and 1 that don't contain 3 consecutive zeros.
I tried to do the following automaton but isn't complete as, for example, it doesn't recognize the string: 1001110
How can I change it? For the rest, my reasoning to solve the exercise is that correct?
Thanks so much
i made this in paint so not looking nice but,try below automation.
Your starting state, q0, is a state that is not reached by reading a zero. As you correctly modeled in your automaton, from the state q0 you must allow the automaton to read up to two zeros, hence you need states q1 (reached by reading exactly one consecutive zero) and q2 (reached by reading exactly two consecutive zeros).
Whenever you read a 1 you will be in a state that was not reached by reading a zero.
Now a question is, how many states do you need?
It is permissible to have more than one end state in a finite automaton. In this case you must have more than one end state, because any time you read a 1 you must reach a state that permits two subsequent consecutive zeros to be read, whereas every time you read a zero you much reach a state that does not permit two subsequent consecutive zeros to be read, and your language has strings that end in zero as well as strings that end in 1.
Related
This is a first run-in with not only bitwise ops in python, but also strange (to me) syntax.
for i in range(2**len(set_)//2):
parts = [set(), set()]
for item in set_:
parts[i&1].add(item)
i >>= 1
For context, set_ is just a list of 4 letters.
There's a bit to unpack here. First, I've never seen [set(), set()]. I must be using the wrong keywords, as I couldn't find it in the docs. It looks like it creates a matrix in pythontutor, but I cannot say for certain. Second, while parts[i&1] is a slicing operation, I'm not entirely sure why a bitwise operation is required. For example, 0&1 should be 1 and 1&1 should be 0 (carry the one), so binary 10 (or 2 in decimal)? Finally, the last bitwise operation is completely bewildering. I believe a right shift is the same as dividing by two (I hope), but why i>>=1? I don't know how to interpret that. Any guidance would be sincerely appreciated.
[set(), set()] creates a list consisting of two empty sets.
0&1 is 0, 1&1 is 1. There is no carry in bitwise operations. parts[i&1] therefore refers to the first set when i is even, the second when i is odd.
i >>= 1 shifts right by one bit (which is indeed the same as dividing by two), then assigns the result back to i. It's the same basic concept as using i += 1 to increment a variable.
The effect of the inner loop is to partition the elements of _set into two subsets, based on the bits of i. If the limit in the outer loop had been simply 2 ** len(_set), the code would generate every possible such partitioning. But since that limit was divided by two, only half of the possible partitions get generated - I couldn't guess what the point of that might be, without more context.
I've never seen [set(), set()]
This isn't anything interesting, just a list with two new sets in it. So you have seen it, because it's not new syntax. Just a list and constructors.
parts[i&1]
This tests the least significant bit of i and selects either parts[0] (if the lsb was 0) or parts[1] (if the lsb was 1). Nothing fancy like slicing, just plain old indexing into a list. The thing you get out is a set, .add(item) does the obvious thing: adds something to whichever set was selected.
but why i>>=1? I don't know how to interpret that
Take the bits in i and move them one position to the right, dropping the old lsb, and keeping the sign. Sort of like this
Except of course that in Python you have arbitrary-precision integers, so it's however long it needs to be instead of 8 bits.
For positive numbers, the part about copying the sign is irrelevant.
You can think of right shift by 1 as a flooring division by 2 (this is different from truncation, negative numbers are rounded towards negative infinity, eg -1 >> 1 = -1), but that interpretation is usually more complicated to reason about.
Anyway, the way it is used here is just a way to loop through the bits of i, testing them one by one from low to high, but instead of changing which bit it tests it moves the bit it wants to test into the same position every time.
I need to construct a DFA which recognises all the strings made solely from 0s and 1s, so that thay have an even number of zeros and number of ones divisible by 3. I found an automaton for the case of even number of 0s and even number of 1s:
I tried going from here by adding some states, changing branches, etc.. However I remained unsuccessful usually losing track of what's the automaton doing beacuse of branches and states I'd add. Any help would be greatly appreciated.
You need states which record the divisibility by 2 and by 3, which means you need 6 states. Just call them 0|0, 1|0, 0|1, 1|1, 0|2, 1|2. The first digit tells you that when you reach the state, you have an even or odd number of zeros, the 2nd digit tells you that when you reach the state, you have a number of 1s that, when divided by 3, give the given modulus.
Your state diagram contains:
0|x --0--> 1|x
1|x --0--> 0|x
y|0 --1--> y|1
y|1 --1--> y|2
y|2 --1--> y|0
The start state is 0|0, which is also the only stop state.
The important bit to understand is that each state records the the modulus of the number of zeros or ones read when divided by 2, respectively 3. The 0|0 is then modulus 0 in both cases, which is the accepting criteria. This all works, because the number of different states to keep track of is finite. The name DFA tells us already that it would not work for an infinite number of states to track.
One way to view it is that the problem asks for the intersection of 2 languages: one containing an even number of zeroes and another having the number of ones divisible by 3. A way to approach this is to make DFAs for both the languages and then make another DFA which keeps track of the pair of states in each DFA when an input symbol is read.
I have used 'e' and 'o' to denote that the number of zeroes is even or odd respectively. The second digit in each of the states defines the remainder obtained by dividing the number of ones by 3.
Is there any trick to guess if a language is regular by just looking at the language?
In order to choose proof methods, I have to have some hypothesis at first. Do you know any hints/patterns required to reduce time consumption in solving long questions?
For instance, in order not to spend time on pumping lemma, when language is regular and I don't want to construct DFA/grammar.
For example:
1. L={w ε {a,b}*/no of a in (w) < no of b in (w)}
2. L={a^nb^m/n,m>=0}
How to tell which is regular by just looking at the above examples??
In general, when looking at a language, a good rule of thumb for whether the language is regular or not is to think of a program that can read a string and answer the question "is this string in the language?"
To write such a program, do you need to store some arbitrary value in a variable or is the program's state (that is, the combination of all possible variables' values) limited to some finite fixed number of possibilities? If the language can be recognized by a program that only needs a fixed number of variables that can only have a fixed number of values, then you've got a regular language. If not, then not.
Using this, I can see that the first language is not regular, but the second language is. In the first language, I need to remember how many as I've seen, and how many bs. (Or at the very least, I need to keep track of (# of as) - (# of bs), and accept if the string ends while that count is negative). At the same time, there's no limit on the number of as, so this count could go arbitrarily large.
In the second language, I don't care what n and m are at all. So with the second language, my program would just keep track of "have I seen at least one b yet?" to make sure we don't have any a characters that occur after the first b. (So, one variable with only two values - true or false)
So one way to make language 1 into a regular language is to change it to be:
1. L={w ∈ {a,b}*/no of a in (w) < no of b in (w), and no of a in (w) < 100}
Now I don't need to keep track of the number of as that I've seen once I hit 100 (since then I know automatically that the string isn't in the language), and likewise with the number of bs - once I hit 100, I can stop counting because I know that'll be enough unless the number of as is itself too large.
One common case you should watch out for with this is when someone asks you about languages where "number of as is a multiple of 13" or "w ∈ {0,1}* and w is the binary representation of a multiple of 13". With these, it might seem like you need to keep track of the whole number to make the determination, but in fact you don't - in both cases, you only need to keep a variable that can count from 0 to 12. So watch out for "multiple of"-type languages. (And the related "is odd" or "is even" or "is 1 more than a multiple of 13")
Other mathematical properties though - for example, w ∈ {0,1}* and w is the binary representation of a perfect square - will result in non-regular languages.
A group of amusing students write essays exclusively by plagiarising portions of the complete works of WIlliam Shakespere. At one end of the scale, an essay might exclusively consist a verbatim copy of a soliloquy... at the other, one might see work so novel that - while using a common alphabet - no two adjacent characters in the essay were used adjacently by Will.
Essays need to be graded. A score of 1 is assigned to any essay which can be found (character-by-character identical) in the plain-text of the complete works. A score of 2 is assigned to any work that can be successfully constructed from no fewer than two distinct (character-by-character identical) passages in the complete works, and so on... up to the limit - for an essay with N characters - which scores N if, and only if, no two adjacent characters in the essay were also placed adjacently in the complete works.
The challenge is to implement a program which can efficiently (and accurately) score essays. While any (practicable) data-structure to represent the complete works is acceptable - the essays are presented as ASCII strings.
Having considered this teasing question for a while, I came to the conclusion that it is much harder than it sounds. The naive solution, for an essay of length N, involves 2**(N-1) traversals of the complete works - which is far too inefficient to be practical.
While, obviously, I'm interested in suggested solutions - I'd also appreciate pointers to any literature that deals with this, or any similar, problem.
CLARIFICATIONS
Perhaps some examples (ranging over much shorter strings) will help clarify the 'score' for 'essays'?
Assume Shakespere's complete works are abridged to:
"The quick brown fox jumps over the lazy dog."
Essays scoring 1 include "own fox jump" and "The quick brow". The essay "jogging" scores 6 (despite being short) because it can't be represented in fewer than 6 segments of the complete works... It can be segmented into six strings that are all substrings of the complete works as follows: "[j][og][g][i][n][g]". N.B. Establishing scores for this short example is trivial compared to the original problem - because, in this example "complete works" - there is very little repetition.
Hopefully, this example segmentation helps clarify the 2*(N-1) substring searches in the complete works. If we consider the segmentation, the (N-1) gaps between the N characters in the essay may either be a gap between segments, or not... resulting in ~ 2*(N-1) substring searches of the complete works to test each segmentation hypothesis.
An (N)DFA would be a wonderful solution - if it were practical. I can see how to construct something that solved 'substring matching' in this way - but not scoring. The state space for scoring, on the surface, at least, seems wildly too large (for any substantial complete works of Shakespere.) I'd welcome any explanation that undermines my assumptions that the (N)DFA would be too large to be practical to compute/store.
A general approach for plagiarism detection is to append the student's text to the source text separated by a character not occurring in either and then to build either a suffix tree or suffix array. This will allow you to find in linear time large substrings of the student's text which also appear in the source text.
I find it difficult to be more specific because I do not understand your explanation of the score - the method above would be good for finding the longest stretch in the students work which is an exact quote, but I don't understand your N - is it the number of distinct sections of source text needed to construct the student's text?
If so, there may be a dynamic programming approach. At step k, we work out the least number of distinct sections of source text needed to construct first k characters of the student's text. Using a suffix array built just from the source text or otherwise, we find the longest match between the source text and characters x..k of the student's text, where x is of course as small as possible. Then the least number of sections of source text needed to construct the first k characters of student text is the least needed to construct 1..x-1 (which we have already worked out) plus 1. By running this process for k=1..the length of the student text we find the least number of sections of source text needed to reconstruct the whole of it.
(Or you could just search StackOverflow for the student's text, on the grounds that students never do anything these days except post their question on StackOverflow :-)).
I claim that repeatedly moving along the target string from left to right, using a suffix array or tree to find the longest match at any time, will find the smallest number of different strings from the source text that produces the target string. I originally found this by looking for a dynamic programming recursion but, as pointed out by Evgeny Kluev, this is actually a greedy algorithm, so let's try and prove this with a typical greedy algorithm proof.
Suppose not. Then there is a solution better than the one you get by going for the longest match every time you run off the end of the current match. Compare the two proposed solutions from left to right and look for the first time when the non-greedy solution differs from the greedy solution. If there are multiple non-greedy solutions that do better than the greedy solution I am going to demand that we consider the one that differs from the greedy solution at the last possible instant.
If the non-greedy solution is going to do better than the greedy solution, and there isn't a non-greedy solution that does better and differs later, then the non-greedy solution must find that, in return for breaking off its first match earlier than the greedy solution, it can carry on its next match for longer than the greedy solution. If it can't, it might somehow do better than the greedy solution, but not in this section, which means there is a better non-greedy solution which sticks with the greedy solution until the end of our non-greedy solution's second matching section, which is against our requirement that we want the non-greedy better solution that sticks with the greedy one as long as possible. So we have to assume that, in return for breaking off the first match early, the non-greedy solution gets to carry on its second match longer. But this doesn't work, because, when the greedy solution finally has to finish using its first match, it can jump on to the same section of matching text that the non-greedy solution is using, just entering that section later than the non-greedy solution did, but carrying on for at least as long as the non-greedy solution. So there is no non-greedy solution that does better than the greedy solution and the greedy solution is optimal.
Have you considered using N-Grams to solve this problem?
http://en.wikipedia.org/wiki/N-gram
First read the complete works of Shakespeare and build a trie. Then process the string left to right. We can greedily take the longest substring that matches one in the data because we want the minimum number of strings, so there is no factor of 2^N. The second part is dirt cheap O(N).
The depth of the trie is limited by the available space. With a gigabyte of ram you could reasonably expect to exhaustively cover Shakespearean English string of length at least 5 or 6. I would require that the leaf nodes are unique (which also gives a rule for constructing the trie) and keep a pointer to their place in the actual works, so you have access to the continuation.
This feels like a problem of partial matching a very large regular expression.
If so it can be solved by a very large non deterministic finite state automata or maybe more broadly put as a graph representing for every character in the works of Shakespeare, all the possible next characters.
If necessary for efficiency reasons the NDFA is guaranteed to be convertible to a DFA. But then this construction can give rise to 2^n states, maybe this is what you were alluding to?
This aspect of the complexity does not really worry me. The NDFA will have M + C states; one state for each character and C states where C = 26*2 + #punctuation to connect to each of the M states to allow the algorithm to (re)start when there are 0 matched characters. The question is would the corresponding DFA have O(2^M) states and if so is it necessary to make that DFA, theoretically it's not necessary. However, consider that in the construction, each state will have one and only one transition to exactly one other state (the next state corresponding to the next character in that work). We would expect that each one of the start states will be connected to on average M/C states, but in the worst case M meaning the NDFA will have to track at most M simultaneous states. That's a large number but not an impossibly large number for computers these days.
The score would be derived by initializing to 1 and then it would incremented every time a non-accepting state is reached.
It's true that one of the approaches to string searching is building a DFA. In fact, for the majority of the string search algorithms, it looks like a small modification on failure to match (increment counter) and success (keep going) can serve as a general strategy.
Overview
I'm looking to analyse the difference between two characters as part of a password strength checking process.
I'll explain what I'm trying to achieve and why and would like to know if what I'm looking to do is formally defined and whether there are any recommended algorithms for achieving this.
What I'm looking to do
Across a whole string, I'm looking to compare the current character with the previous character and determine how different they are.
As this relates to password strength checking, the difference between one character and it's predecessor in a string might be defined as being how predictable character N is from knowing character N - 1. There might be a formal definition for this of which I'm not aware.
Example
A password of abc123 could be arguably less secure than azu590. Both contain three letters followed by three numbers, however in the case of the former the sequence is more predictable.
I'm assuming that a password guesser might try some obvious sequences such that abc123 would be tried much before azu590.
Considering the decimal ASCII values for the characters in these strings, and given that b is 1 different from a and c is 1 different again from b, we could derive a simplistic difference calculation.
Ignoring cases where two consecutive characters are not in the same character class, we could say that abc123 has an overall character to character difference of 4 whereas azu590 has a similar difference of 25 + 5 + 4 + 9 = 43.
Does this exist?
This notion of character to character difference across a string might be defined, similar to the Levenshtein distance between two strings. I don't know if this concept is defined or what it might be called. Is it defined and if so what is it called?
My example approach to calculating the character to character difference across a string is a simple and obvious approach. It may be flawed, it may be ineffective. Are there any known algorithms for calculating this character to character difference effectively?
It sounds like you want a Markov Chain model for passwords. A Markov Chain has a number of states and a probability of transitioning between the states. In your case the states are the characters in the allowed character set and the probability of a transition is proportional to the frequency that those two letters appear consecutively. You can construct the Markov Chain by looking at the frequency of the transitions in an existing text, for example a freely available word list or password database.
It is also possible to use variations on this technique (Markov chain of order m) where you for example consider the previous two characters instead of just one.
Once you have created the model you can use the probability of generating the password from the model as a measure of its strength. This is the product of the probabilities of each state transition.
For general signals/time-series data, this is known as Autocorrelation.
You could try adapting the Durbin–Watson statistic and test for positive auto-correlation between the characters. A naïve way may be to use the unicode code-points of each character, but I'm sure that will not be good enough.