Modules qualified under Haskell namespace Control or Data - haskell

What properties are supposed to put Haskell modules under namespace rather Control than Data or vice versa? Any guidelines or insights are much appreciated.

Haskell has rough guidelines
on how to name module names. You can go through that link to get an general idea about it. The general convention is that Control will hold some sort of abstraction pattern where as Data will hold some data types and data structure.

Related

How do I go about creating a UML diagram for large projects I didn't code?

For a large project of mine I've been given the task to create class diagrams for existing projects similar to mine.
For example, I have to create a class diagram for this website. I wouldn't even know where to start in such a project. I'm guessing since there is no single language for such projects there isn't any handy tool that would start me off, so I presume I'll be printing off lots of code and figuring it all out in my head.
Any help would be greatly appreciated!
Here are some ideas which might help you:
Extract a list of all classes from the existing code.
For each class, find relationships to other classes (for example: class
A uses instances of class B, class B calls certain methods from class
C etc.).
Find groups or clusters of classes which contribute to a
common subtask. This can give you a rough structure of the project.
Identify classes that deliver a major functionality for the project
as opposed to classes which are merely helpers.
And of course: Try to get as much information as you can from anyone familiar with the code.
In conclusion, this will typically demand a lot of familiarization with the given implementation.
Etherscan will display a UML diagram for Solidity for contracts with verified source code using Nick Addisons sol2uml (https://github.com/naddison36/sol2uml)
For example:
Reputation token by Augur:
https://etherscan.io/address/0x1985365e9f78359a9B6AD760e32412f4a445E862#code
UML diagram: https://etherscan.io/viewsvg?t=1&a=0x1985365e9f78359a9B6AD760e32412f4a445E862

How to model a mixin in UML

What is the best way to represent a "mixin" using UML?
As documented in this article:
In object-oriented programming languages, a mixin refers to a defined
amount of functionality which can be added to a class. An important
aspect of this is that it makes it possible to concentrate more on the
properties of a particular behaviour than on the inheritance
structures during development.
I will give more details about my particular use case.
I have a collection of classes that model different types of objects. Because all of them can be stored on a storage, I want to use a mixin to implement all the functionality related to "being stored".
Of course, I can use abstract classes but I do not like it because these classes should be part of a different hierarchy of classes and the fact that they can be stored is only a secondary property.
Another option can be to use composition and add the "storage node" as a field of this classes. I do not like this option either for the same reason: I do not want to create any dependency between the classes and the storage.
I have already implemented the solution in Java using a mixin based on dynamic proxies and I would like to document the solution with a clear UML class diagram. Is there a standard way to represent this mixin?
I am also wondering whether it is a good idea to model also how the mixin has been implemented (using proxies) or it is better to use a more abstract representation.
Thanks
Actually there are many ways to model this in UML:
One approach could be to stereotype the operations and properties with <<mixin>> or the like and then use tagged values to describe where you got them from.
Another (I'd prefer) is to actually use a <<mixin>> stereotyped Generalization and attach a note to that telling which operations/properties should be mixed. That would give the implementer a guide to just "lean implementation of the general class".
Eventually you could create <<mixin>> sub-classes with subsets of the ops/props you want to mix in the final class and then Generalize from those.
Probably one could come up with more solutions. Use an approach which suits you best. There is not generic mixin pattern in UML (to my knowledge).

What does the term data classes only mean?

I have been told to create an analysis diagram but it states that only date classes should be added. I thought that is what you use anyway, or am I thinking about this wrongly
"The models include a domain/analysis class diagram (which contains data classes only)"
I wouldn't ever use this terminology but my guess is that the instructor/manager wants your model to contain only the classes that will be later on implemented in the database (i.e. those that represent the concepts that you´ll need to store information about). To me this set coincides with what I´d refer to as domain classes but maybe your instructor has a different interpretation

Representation of C# Collections

I want to know how C# collections are represented in memory? Are they represented as linked list or an array.In my project I have to make extensive use of list and performance is critical, so shall I create custom generic Linked List(with some additional features) or shall I use generic List class. Any help will be highly appericiated.
Use Reflection (or ILSpy, etc) to view internal realization of c# collections

What's the best approach to naming classes?

Coming up with good, precise names for classes is notoriously difficult. Done right, it makes code more self-documenting and provides a vocabulary for reasoning about code at a higher level of abstraction.
Classes which implement a particular design pattern might be given a name based on the well known pattern name (e.g. FooFactory, FooFacade), and classes which directly model domain concepts can take their names from the problem domain, but what about other classes? Is there anything like a programmer's thesaurus that I can turn to when I'm lacking inspiration, and want to avoid using generic class names (like FooHandler, FooProcessor, FooUtils, and FooManager)?
I'll cite some passages from Implementation Patterns by Kent Beck:
Simple Superclass Name
"[...] The names should be short and punchy.
However, to make the names precise
sometimes seems to require several
words. A way out of this dilemma is
picking a strong metaphor for the
computation. With a metaphor in mind,
even single words bring with them a
rich web of associations, connections,
and implications. For example, in the
HotDraw drawing framework, my first
name for an object in a drawing was
DrawingObject. Ward Cunningham came
along with the typography metaphor: a
drawing is like a printed, laid-out
page. Graphical items on a page are
figures, so the class became Figure.
In the context of the metaphor, Figure
is simultaneously shorter, richer, and
more precise than DrawingObject."
Qualified Subclass Name
"The names of subclasses have two jobs.
They need to communicate what class
they are like and how they are
different. [...] Unlike the names at
the roots of hierarchies, subclass
names aren’t used nearly as often in
conversation, so they can be
expressive at the cost of being
concise. [...]
Give subclasses that serve as the
roots of hierarchies their own simple
names. For example, HotDraw has a
class Handle which presents figure-
editing operations when a figure is
selected. It is called, simply, Handle
in spite of extending Figure. There is
a whole family of handles and they
most appropriately have names like
StretchyHandle and TransparencyHandle.
Because Handle is the root of its own
hierarchy, it deserves a simple
superclass name more than a qualified
subclass name.
Another wrinkle in
subclass naming is multiple-level
hierarchies. [...] Rather than blindly
prepend the modifiers to the immediate
superclass, think about the name from
the reader’s perspective. What class
does he need to know this class is
like? Use that superclass as the basis
for the subclass name."
Interface
Two styles of naming interfaces depend on how you are thinking of the interfaces.
Interfaces as classes without implementations should be named as if they were classes
(Simple Superclass Name, Qualified Subclass Name). One problem with this style of
naming is that the good names are used up before you get to naming classes. An
interface called File needs an implementation class called something like
ActualFile, ConcreteFile, or (yuck!) FileImpl (both a suffix and an
abbreviation). In general, communicating whether one is dealing with a concrete or
abstract object is important, whether the abstract object is implemented as an
interface or a superclass is less important. Deferring the distinction between
interfaces and superclasses is well >supported by this style of naming, leaving you
free to change your mind later if that >becomes necessary.
Sometimes, naming concrete classes simply is more important to communication than
hiding the use of interfaces. In this case, prefix interface names with “I”. If the
interface is called IFile, the class can be simply called File.
For more detailed discussion, buy the book! It's worth it! :)
Always go for MyClassA, MyClassB - It allows for a nice alpha sort..
I'm kidding!
This is a good question, and something I experienced not too long ago. I was reorganising my codebase at work and was having problems of where to put what, and what to call it..
The real problem?
I had classes doing too much. If you try to adhere to the single responsibility principle it will make everything all come together much nicer.. Rather than one monolithic PrintHandler class, you could break it down into PageHandler , PageFormatter (and so on) and then have a master Printer class which brings it all together.
In my re-org, it took me time, but I ended up binning a lot of duplicate code, got my codebase much more logical and learned a hell of a lot when it comes to thinking before throwing an extra method in a class :D
I would not however recommend putting things like pattern names into the class name. The classes interface should make that obvious (like hiding the constructor for a singleton). There is nothing wrong with the generic name, if the class is serving a generic purpose.
Good luck!
Josh Bloch's excellent talk about good API design has a few good bits of advice:
Classes should do one thing and do it well.
If a class is hard to name or explain then it's probably not following the advice in the previous bullet point.
A class name should instantly communicate what the class is.
Good names drive good designs.
If your problem is what to name exposed internal classes, maybe you should consolidate them into a larger class.
If your problem is naming a class that is doing a lot of different stuff, you should consider breaking it into multiple classes.
If that's good advice for a public API then it can't hurt for any other class.
If you're stuck with a name, sometimes just giving it any half-sensible name with commitment to revising it later is a good strategy.
Don't get naming paralysis. Yes, names are very important but they're not important enough to waste huge amounts of time on. If you can't think up a good name in 10 minutes, move on.
If a good name doesn't spring to mind, I would probably question whether there is a deeper problem - is the class serving a good purpose? If it is, naming it should be pretty straightforward.
If your "FooProcessor" really does process foos, then don't be reluctant to give it that name just because you already have a BarProcessor, BazProcessor, etc. When in doubt, obvious is best. The other developers who have to read your code may not be using the same thesaurus you are.
That said, more specificity wouldn't hurt for this particular example. "Process" is a pretty broad word. Is it really a "FooUpdateProcessor" (which might become "FooUpdater"), for example? You don't have to get too "creative" about the naming, but if you wrote the code you probably have a fairly good idea of what it does and doesn't do.
Finally, remember that the bare class name isn't all that you and the readers of your code have to go on - there are usually namespaces in play as well. Those can often give readers enough context to see clearly what your class if really for, even if its bare name is fairly generic.

Resources