How fundamentally different are push-pull and arrowized FRP? - haskell

I want to study FRP in Haskell, but it's a bit difficult to decide on a library to use.
Many seem to be dead attempts, some seem to have been resurrected (such as recent activity on Yampa).
From what I read, it seems that there are two "kinds" of FRP: push-pull FRP (like in Reactive-banana and Reflex) on one side and arrowized FRP (like in Yampa) on the other side. It seems that there also used to be some "classic FRP" at the time of Fran and FrTime, but I have not spotted any recent activity in these.
Are these two (or three) really fundamentally different approaches of FRP?
Is one of them outdated theory whereas the other would be the "stuff of the future"?
Or do they have to evolve in parallel, addressing different purposes?
Did I name the most prominent library of each category, or are there other options to consider (Sodium, Netwire, et al)?
I finally watched the [talk from Evan Czaplicki](https://www.youtube.com/watch?v=Agu6jipKfYw) recommended in the comments by J. Abrahamson. It is very interesting and did help clarify things up for me. I highly recommend it to anyone who found this question interesting.

I took a trip to Haskell.org to investigate your question What I found are two important papers you ought to read to further your research, and I am building my answer to your question from these scholarly papers.
Push-Pull FRP by Conal Elliott
Generalising Monads to Arrows by John Hughes
Yes, but also no. According to Elliot, push is data driven FRP evaluation and pull relates to what is called "demand" driven evaluation. The author recommends pull because push tends to idle in between data inputs. Here's the crux: push-pull combines and balances these behaviors for the chief purpose of minimizing the need to recompute values. It's simple; operating FRP with push-pull hastens the ability to react. Arrow is a different technique for using abstract types to link values and evaluate them simultaneously. All these concepts are fundamentally different. But don't take my word for it:
The nature of the Arrow interface is problematic for the goal of minimal re-evaluation. Input events and behaviors get combined into a single input, which then changes whenever any component changes, (Elliott).
Thus, Arrow contradicts the goal of push-pull. That does not mean you can't use all of these at once, just that it would be complex, and there are some things you cannot compute without abstract Arrow types.
I have not found scholarly opinions on which approaches are "the way of the future." Only note that arrows can handle simultaneity particularly well. If you could implement arrows and use push-pull to minimize computations, that would be the way of the future.
Yes, they address separate purposes. As I said, they can be formulated together but it is difficult to implement and even if it does work, it would probably negate the reactive speed benefits of push-pull.
That's subjective, but Reactive and Yampa appear to be the most commonly cited language libraries for FRP. I would say Reactive by Conal Elliott has deep roots, and Yampa is established as well. Other projects like Netwire arose as replacements, but it could be awhile before they replace the giants.
Hope this helps! Like I said reading the articles I pointed out will give you a better sense of the semantic distance between arrow, push and pull.

Related

Functional approaches to designing the discrete side of hybrid systems

I'm working on developing controllers for hybrid systems in Haskell.
FRP libraries (right now I'm using netwire, but there are several good ones and a lot of interesting research on future ones) provide a great solution for the continuous-time side of the problem. Augmenting them with signal names, dimensions, preferred units, and so forth gets you a system that has modularity, is self-describing, and has a straightforward path to confidence in correctness.
I'm looking for information, folklore, or papers that provide similar properties for the discrete-time side. In some sense the problem is much easier, state machines are well-studied and simple. In other senses it's more difficult, I'll briefly explain how.
Correctness is obviously the most important thing, and thankfully it's also straightforward.
Self-description is more of a problem. You'd like the controller not just to be in the correct state, but to be capable of telling you what state it's in. Also how it got there. And where it might go next. So you can tack names on to everything, and it works, but it conflicts somewhat with modularity. You'd also like to be able to build complex discrete time behaviors from simpler ones. But when you ask the system what state it's in, generally the high-level answer is more interesting (or at least, as interesting) as the low level answer. How do you get this cleanly? I've tried a few naive approaches and have wrapped myself in spaghetti a few different ways, but it seems like there must be elegant solutions?
Another problem I've had with self-description is that I'd like to have a list of self-describing conditions (generally comparisons: has it been 10 seconds? am I within 3 feet of the next waypoint? has the battery power fallen below 15%? etc) that are being monitored which might trigger the next state transition. There are tricky questions of what even are the desirable semantics here, since it seems like some of these events are better handled "from the bottom up" (e.g. expected termination conditions of whatever low level step you are performing) and some "from the top down" (e.g. equipment failure detection, geofencing, ...). This can lead to spaghetti of its own even if you relax the goal of self-description.
In addition to diagnostics, accurate self-description information here could also be very useful for abstract interpretation, projecting the state of the system into the future by guessing which events are likely to occur when. Many of the event conditions lead themselves to fairly simple guesses (e.g. using velocity made good, fuel consumption rate, timers). Others are more complicated but might still be worth the effort to develop projections for some applications (e.g. expected orders from operators, weather forecasts, projected tracks for moving objects of interest). It would be nice to find a design that annotates conditions not only with names, but also with functions for this sort of stuff.
Does anyone have experience with this that they are willing to share?
Okay, so I would say the "real" answer to your question is that some of things that you are asking for are open areas of research --- in particular I think some of the self-describing features you desire may necessitate some degree of "spaghetti" simply because the problem you are trying to solve is inherently complicated.
That being said, your focus on modularity is exactly the right approach. I would say, take a look at Keymaera as I believe it has the features you are looking for despite being in Java. I would also recommend looking at the publications page on the Keymaera website as this should provide you valuable insight to the problem in general.
If you do not like Keymaera's approach you can also look into using Timed Automata which is another direction modeling-wise that should be sufficient for your problem description.

What's the status of current Functional Reactive Programming implementations?

I'm trying to visualize some simple automatic physical systems (such things as pendulum, robot arms,etc.) in Haskell.
Often those systems can be described by equations like
df/dt = c*f(t) + u(t)
where u(t) represents some kind of 'intelligent control'. Those systems look to fit very nicely in the Functional Reactive Programming paradigm.
So I grabbed the book "The Haskell School of Expression" by Paul Hudak,
and found that the domain specific language "FAL" (for Functional Animation Language) presented there actually works quite pleasently for my simple toy systems (although some functions, notably integrate, seemed to be a bit too lazy for an efficient use, but easily fixable).
My question is, what's the more mature, up-to-date, well-maintained, performance-tuned alternative for more advanced, or even practical applications today?
This wiki page lists several options for Haskell, but I'm not clear about the following respects:
The status of "reactive", the project from Conal Eliott who is (as I understand it) one of the inventers of this programming paradigm, looks a bit stale. I love his code, but maybe I should try other more up-to-date alternatives? What's the primary difference between them, in terms of syntax/performance/runtime-stability?
To quote from a survey in 2011, Section 6, "... FRP implementations are still not efficient enough or predictable enough in performance to be used effectively in domains which require latency guarantees ...". Alghough the survey suggests some interesting possible optimizations, given the fact that FRP is there for more than 15 years, I get the impression that this performance problem might be something very or even inherently difficult to solve at least within a few years. Is this true?
The same author of the survey talks about "time leaks" in his blog. Is the problem unique to FRP, or something we are generally having when programming in a pure, non-strict language? Have you ever found it just too difficult to stabilize an FRP-based system over time, if not performant enough?
Is this still a research level project? Are the people like plant engineers, robotics engineers, financial engineers, etc. actually using them (in whaterver language that suits their needs)?
Although I personally prefer a Haskell implementation, I'm open to other suggestions. For example, it would be particularly fun to have an Erlang implementation --- it would then be very easy to have an intelligent, adaptive, self-learning server process!
Right now there are mainly two practical Haskell libraries out there for functional reactive programming. Both are maintained by single persons, but are receiving code contributions from other Haskell programmers as well:
Netwire focusses on efficiency, flexibility and predictability. It has its own event paradigm and can be used in areas where traditional FRP does not work, including network services and complex simulations. Style: applicative and/or arrowized. Initial author and maintainer: Ertugrul Söylemez (this is me).
reactive-banana builds on the traditional FRP paradigm. While it is practical to use it also serves as ground for classic FRP research. Its main focus is on user interfaces and there is a ready-made interface to wx. Style: applicative. Initial author and maintainer: Heinrich Apfelmus.
You should try both of them, but depending on your application you will likely find one or the other to be a better fit.
For games, networking, robot control and simulations you will find Netwire to be useful. It comes with ready-made wires for those applications, including various useful differentials, integrals and lots of functionality for transparent event handling. For a tutorial visit the documentation of the Control.Wire module on the page I linked.
For graphical user interfaces currently your best choice is reactive-banana. It already has a wx interface (as a separate library reactive-banana-wx) and Heinrich blogs a lot about FRP in this context including code samples.
To answer your other questions: FRP isn't suitable in scenarios where you need real-time predictability. This is largely due to Haskell, but unfortunately FRP is difficult to realize in lower level languages. As soon as Haskell itself becomes real-time-ready, FRP will get there, too. Conceptually Netwire is ready for real-time applications.
Time leaks aren't really a problem anymore, because they are largely related to the monadic framework. Practical FRP implementations simply don't offer a monadic interface. Yampa has started this and Netwire and reactive-banana both build on that.
I know of no commercial or otherwise large scale projects using FRP right now. The libraries are ready, but I think the people aren't – yet.
Although there are some good answers already, I'm going to attempt to answer your specific questions.
reactive is not usable for serious projects, due to time leak problems. (see #3). The current library with the most similar design is reactive-banana, which was developed with reactive as an inspiration, and in discussion with Conal Elliott.
Although Haskell itself is inappropriate for hard real-time applications, it is possible to use Haskell for soft realtime applications in some cases. I'm not familiar with current research, but I don't believe this is an insurmountable problem. I suspect that either systems like Yampa, or code generation systems like Atom, are possibly the best approach to solving this.
A "time leak" is a problem specific to switchable FRP. The leak occurs when a system is unable to free old objects because it may need them if a switch were to occur at some point in the future. In addition to a memory leak (which can be quite severe), another consequence is that, when the switch occurs, the system must pause while the chain of old objects is traversed to generate current state.
Non-switchable frp libraries such as Yampa and older versions of reactive-banana don't suffer from time leaks. Switchable frp libraries generally employ one of two schemes: either they have a special "creation monad" in which FRP values are created, or they use an "aging" type parameter to limit the contexts in which switches can occur. elerea (and possibly netwire?) use the former, whereas recent reactive-banana and grapefruit use the latter.
By "switchable frp", I mean one which implements Conal's function switcher :: Behavior a -> Event (Behavior a) -> Behavior a, or identical semantics. This means that the shape of the network can dynamically switch as it's run.
This doesn't really contradict #ertes's statement about monadic interfaces: it turns out that providing a Monad instance for an Event makes time leaks possible, and with either of the above approaches it's no longer possible to define the equivalent Monad instances.
Finally, although there's still a lot of work remaining to be done with FRP, I think some of the newer platforms (reactive-banana, elerea, netwire) are stable and mature enough that you can build reliable code from them. But you may need to spend a lot of time learning the ins and outs in order to understand how to get good performance.
I'm going to list a couple of items in the Mono and .Net space and one from the Haskell space that I found not too long ago. I'll start with Haskell.
Elm - link
Its description as per its site:
Elm aims to make front-end web development more pleasant. It
introduces a new approach to GUI programming that corrects the
systemic problems of HTML, CSS, and JavaScript. Elm allows you to
quickly and easily work with visual layout, use the canvas, manage
complicated user input, and escape from callback hell.
It has its own variant of FRP. From playing with its examples it seems pretty mature.
Reactive Extensions - link
Description from its front page:
The Reactive Extensions (Rx) is a library for composing asynchronous
and event-based programs using observable sequences and LINQ-style
query operators. Using Rx, developers represent asynchronous data
streams with Observables, query asynchronous data streams using LINQ
operators, and parameterize the concurrency in the asynchronous data
streams using Schedulers. Simply put, Rx = Observables + LINQ +
Schedulers.
Reactive Extensions comes from MSFT and implements many excellent operators that simplify handling events. It was open sourced just a couple of days ago. It's very mature and used in production; in my opinion it would have been a nicer API for the Windows 8 APIs than the TPL-library provides; because observables can be both hot and cold and retried/merged etc, while tasks always represent hot or done computations that are either running, faulted or completed.
I've written server-side code using Rx for asynchronocity, but I must admit that writing functionally in C# can be a bit annoying. F# has a couple of wrappers, but it's been hard to track the API development, because the group is relatively closed and isn't promoted by MSFT like other projects are.
Its open sourcing came with the open sourcing of its IL-to-JS compiler, so it could probably work well with JavaScript or Elm.
You could probably bind F#/C#/JS/Haskell together very nicely using a message broker, like RabbitMQ and SocksJS.
Bling UI Toolkit - link
Description from its front page:
Bling is a C#-based library for easily programming images, animations,
interactions, and visualizations on Microsoft's WPF/.NET. Bling is
oriented towards design technologists, i.e., designers who sometimes
program, to aid in the rapid prototyping of rich UI design ideas.
Students, artists, researchers, and hobbyists will also find Bling
useful as a tool for quickly expressing ideas or visualizations.
Bling's APIs and constructs are optimized for the fast programming of
throw away code as opposed to the careful programming of production
code.
Complimentary LtU-article.
I've tested this, but not worked with it for a client project. It looks awesome, has nice C# operator overloading that form the bindings between values. It uses dependency properties in WPF/SL/(WinRT) as event sources. Its 3D animations work well on reasonable hardware. I would use this if I end up on a project in need for visualizations; probably porting it to Windows 8.
ReactiveUI - link
Paul Betts, previously at MSFT, now at Github, wrote that framework. I've worked with it pretty extensively and like the model. It's more decoupled than Blink (by its nature from using Rx and its abstractions) - making it easier to unit test code using it. The github git client for Windows is written in this.
Comments
The reactive model is performant enough for most performance-demanding applications. If you are thinking of hard real-time, I'd wager that most GC-languages have problems. Rx, ReactiveUI create some amount of small object that need to be GCed, because that's how subscriptions are created/disposed and intermediate values are progressed in the reactive "monad" of callbacks. In general on .Net I prefer reactive programming over task-based programming because callbacks are static (known at compile time, no allocation) while tasks are dynamically allocated (not known, all calls need an instance, garbage created) - and lambdas compile into compiler-generated classes.
Obviously C# and F# are strictly evaluated, so time-leak isn't a problem here. Same for JS. It can be a problem with replayable or cached observables though.

machine representation of natural text

I'm currently working on high-level machine representation of natural text.
For example,
"I had one dog but I gave it to Danny who didn't have any"
would be
I.have.dog =1
I.have.dog -=1
Danny.have.dog = 0
Danny.have.dog +=1
something like this....
I'm trying to find resources, but can't really find matching topics..
Is there a valid subject name for this type of research? Any library of resources?
Natural logic sounds like something related but it's not really the same thing I'm working on. Please help me out!
Representing natural language's meaning is the domain of computational semantics. Within that area, lots of frameworks have been developed, though the basic one is still first-order logic.
Specifically, your problem seems to be that of recognizing discourse semantics, which deals with information change brought about by language use. This is pretty much an open area of research, so expect to find a lot of research papers and PhD positions, but little readily-usable software.
As larsmans already said, this is pretty much a really open field of research, called computational semantics (a subfield of computational linguistics.)
There's one important thing that you'll need to understand before starting off in the comp-sem world: most people there use fancy high-level languages. By high-level I don't mean C, but more something like LISP, Prolog, or, as of late, Haskell. Computational semantics is very close to logic, which is why people researching the topic are more comfortable with functional and logical languages — they're closer to what they actually use all day long.
It will also be very useful for you to first look at some foundational course in predicate logic, since that's what the underlying literature usually takes for granted.
A good introduction to the connection between logic and language is L.T.F. Gamut — Logic, Language, and Meaning, volume I. This deals with the linguistic side of semantics, which won't help you implement anything, but it will help you understand the following literature. That said, there are at least some books that will explain predicate logic as they go, but if you ask me, any person really interested in the representation of language as a formal system should take a course in predicate and possibly intuitionist and intensional logic.
To give you a bit of a peek, your example is rather difficult to treat for
current comp-sem approaches. Not impossible, but already pretty high up the
scale of difficulty. What makes it difficult is the tense for one part (dealing
with tense and aspect will typically bring you into even semantics,) but also
that you'd have to define the give and have relations in a way that
works for this example. (An easier example to work with would be, say "I had
a dog, but I gave it to Danny who didn't have any." Can you see why?)
Let's translate "I have a dog."
∃x[dog(x) ∧ have(I,x)]
(There is an object x, such that x is a dog and the have-relation holds between
"I" and x.)
These sentences would then be evaluated against a model, where the "I"
constant might already be defined. By evaluating multiple sentences in sequence,
you could then alter that model so that it keeps track of a conversation.
Let's give you some suggestions to start you off.
The classic comp-sem system is
SHRDLU, which places geometric
figures of certain color in a virtual environment. You can play around with it, since there's a Windows-compatible demo online at that page I linked you to.
The best modern book on the topic is probably Blackburn and Bos
(2005). It's written in Prolog, but
there are sources linked on the page to learn Prolog
(now!)
Van Eijck and Unger give a good course on computational semantics in Haskell, which is a bit more recent, but in my eyes not quite as educational in terms of raw computational semantics as Blackburn and Bos.

Large-scale design in Haskell? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Closed 6 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
What is a good way to design/structure large functional programs, especially in Haskell?
I've been through a bunch of the tutorials (Write Yourself a Scheme being my favorite, with Real World Haskell a close second) - but most of the programs are relatively small, and single-purpose. Additionally, I don't consider some of them to be particularly elegant (for example, the vast lookup tables in WYAS).
I'm now wanting to write larger programs, with more moving parts - acquiring data from a variety of different sources, cleaning it, processing it in various ways, displaying it in user interfaces, persisting it, communicating over networks, etc. How could one best structure such code to be legible, maintainable, and adaptable to changing requirements?
There is quite a large literature addressing these questions for large object-oriented imperative programs. Ideas like MVC, design patterns, etc. are decent prescriptions for realizing broad goals like separation of concerns and reusability in an OO style. Additionally, newer imperative languages lend themselves to a 'design as you grow' style of refactoring to which, in my novice opinion, Haskell appears less well-suited.
Is there an equivalent literature for Haskell? How is the zoo of exotic control structures available in functional programming (monads, arrows, applicative, etc.) best employed for this purpose? What best practices could you recommend?
Thanks!
EDIT (this is a follow-up to Don Stewart's answer):
#dons mentioned: "Monads capture key architectural designs in types."
I guess my question is: how should one think about key architectural designs in a pure functional language?
Consider the example of several data streams, and several processing steps. I can write modular parsers for the data streams to a set of data structures, and I can implement each processing step as a pure function. The processing steps required for one piece of data will depend on its value and others'. Some of the steps should be followed by side-effects like GUI updates or database queries.
What's the 'Right' way to tie the data and the parsing steps in a nice way? One could write a big function which does the right thing for the various data types. Or one could use a monad to keep track of what's been processed so far and have each processing step get whatever it needs next from the monad state. Or one could write largely separate programs and send messages around (I don't much like this option).
The slides he linked have a Things we Need bullet: "Idioms for mapping design onto
types/functions/classes/monads". What are the idioms? :)
I talk a bit about this in Engineering Large Projects in Haskell and in the Design and Implementation of XMonad. Engineering in the large is about managing complexity. The primary code structuring mechanisms in Haskell for managing complexity are:
The type system
Use the type system to enforce abstractions, simplifying interactions.
Enforce key invariants via types
(e.g. that certain values cannot escape some scope)
That certain code does no IO, does not touch the disk
Enforce safety: checked exceptions (Maybe/Either), avoid mixing concepts (Word, Int, Address)
Good data structures (like zippers) can make some classes of testing needless, as they rule out e.g. out of bounds errors statically.
The profiler
Provide objective evidence of your program's heap and time profiles.
Heap profiling, in particular, is the best way to ensure no unnecessary memory use.
Purity
Reduce complexity dramatically by removing state. Purely functional code scales, because it is compositional. All you need is the type to determine how to use some code -- it won't mysteriously break when you change some other part of the program.
Use lots of "model/view/controller" style programming: parse external data as soon as possible into purely functional data structures, operate on those structures, then once all work is done, render/flush/serialize out. Keeps most of your code pure
Testing
QuickCheck + Haskell Code Coverage, to ensure you are testing the things you can't check with types.
GHC + RTS is great for seeing if you're spending too much time doing GC.
QuickCheck can also help you identify clean, orthogonal APIs for your modules. If the properties of your code are difficult to state, they're probably too complex. Keep refactoring until you have a clean set of properties that can test your code, that compose well. Then the code is probably well designed too.
Monads for Structuring
Monads capture key architectural designs in types (this code accesses hardware, this code is a single-user session, etc.)
E.g. the X monad in xmonad, captures precisely the design for what state is visible to what components of the system.
Type classes and existential types
Use type classes to provide abstraction: hide implementations behind polymorphic interfaces.
Concurrency and parallelism
Sneak par into your program to beat the competition with easy, composable parallelism.
Refactor
You can refactor in Haskell a lot. The types ensure your large scale changes will be safe, if you're using types wisely. This will help your codebase scale. Make sure that your refactorings will cause type errors until complete.
Use the FFI wisely
The FFI makes it easier to play with foreign code, but that foreign code can be dangerous.
Be very careful in assumptions about the shape of data returned.
Meta programming
A bit of Template Haskell or generics can remove boilerplate.
Packaging and distribution
Use Cabal. Don't roll your own build system. (EDIT: Actually you probably want to use Stack now for getting started.).
Use Haddock for good API docs
Tools like graphmod can show your module structures.
Rely on the Haskell Platform versions of libraries and tools, if at all possible. It is a stable base. (EDIT: Again, these days you likely want to use Stack for getting a stable base up and running.)
Warnings
Use -Wall to keep your code clean of smells. You might also look at Agda, Isabelle or Catch for more assurance. For lint-like checking, see the great hlint, which will suggest improvements.
With all these tools you can keep a handle on complexity, removing as many interactions between components as possible. Ideally, you have a very large base of pure code, which is really easy to maintain, since it is compositional. That's not always possible, but it is worth aiming for.
In general: decompose the logical units of your system into the smallest referentially transparent components possible, then implement them in modules. Global or local environments for sets of components (or inside components) might be mapped to monads. Use algebraic data types to describe core data structures. Share those definitions widely.
Don gave you most of the details above, but here's my two cents from doing really nitty-gritty stateful programs like system daemons in Haskell.
In the end, you live in a monad transformer stack. At the bottom is IO. Above that, every major module (in the abstract sense, not the module-in-a-file sense) maps its necessary state into a layer in that stack. So if you have your database connection code hidden in a module, you write it all to be over a type MonadReader Connection m => ... -> m ... and then your database functions can always get their connection without functions from other modules having to be aware of its existence. You might end up with one layer carrying your database connection, another your configuration, a third your various semaphores and mvars for the resolution of parallelism and synchronization, another your log file handles, etc.
Figure out your error handling first. The greatest weakness at the moment for Haskell in larger systems is the plethora of error handling methods, including lousy ones like Maybe (which is wrong because you can't return any information on what went wrong; always use Either instead of Maybe unless you really just mean missing values). Figure out how you're going to do it first, and set up adapters from the various error handling mechanisms your libraries and other code uses into your final one. This will save you a world of grief later.
Addendum (extracted from comments; thanks to Lii & liminalisht) —
more discussion about different ways to slice a large program into monads in a stack:
Ben Kolera gives a great practical intro to this topic, and Brian Hurt discusses solutions to the problem of lifting monadic actions into your custom monad. George Wilson shows how to use mtl to write code that works with any monad that implements the required typeclasses, rather than your custom monad kind. Carlo Hamalainen has written some short, useful notes summarizing George's talk.
Designing large programs in Haskell is not that different from doing it in other languages.
Programming in the large is about breaking your problem into manageable pieces, and how to fit those together; the implementation language is less important.
That said, in a large design it's nice to try and leverage the type system to make sure you can only fit your pieces together in a way that is correct. This might involve newtype or phantom types to make things that appear to have the same type be different.
When it comes to refactoring the code as you go along, purity is a great boon, so try to keep as much of the code as possible pure. Pure code is easy to refactor, because it has no hidden interaction with other parts of your program.
I did learn structured functional programming the first time with this book.
It may not be exactly what you are looking for, but for beginners in functional programming, this may be one of the best first steps to learn to structure functional programs - independant of the scale. On all abstraction levels, the design should always have clearly arranged structures.
The Craft of Functional Programming
http://www.cs.kent.ac.uk/people/staff/sjt/craft2e/
I'm currently writing a book with the title "Functional Design and Architecture". It provides you with a complete set of techniques how to build a big application using pure functional approach. It describes many functional patterns and ideas while building an SCADA-like application 'Andromeda' for controlling spaceships from scratch. My primary language is Haskell. The book covers:
Approaches to architecture modelling using diagrams;
Requirements analysis;
Embedded DSL domain modelling;
External DSL design and implementation;
Monads as subsystems with effects;
Free monads as functional interfaces;
Arrowised eDSLs;
Inversion of Control using Free monadic eDSLs;
Software Transactional Memory;
Lenses;
State, Reader, Writer, RWS, ST monads;
Impure state: IORef, MVar, STM;
Multithreading and concurrent domain modelling;
GUI;
Applicability of mainstream techniques and approaches such as UML, SOLID, GRASP;
Interaction with impure subsystems.
You may get familiar with the code for the book here, and the 'Andromeda' project code.
I expect to finish this book at the end of 2017. Until that happens, you may read my article "Design and Architecture in Functional Programming" (Rus) here.
UPDATE
I shared my book online (first 5 chapters). See post on Reddit
Gabriel's blog post Scalable program architectures might be worth a mention.
Haskell design patterns differ from mainstream design patterns in one
important way:
Conventional architecture: Combine a several components together of
type A to generate a "network" or "topology" of type B
Haskell architecture: Combine several components together of type A to
generate a new component of the same type A, indistinguishable in
character from its substituent parts
It often strikes me that an apparently elegant architecture often tends to fall out of libraries that exhibit this nice sense of homogeneity, in a bottom-up sort of way. In Haskell this is especially apparent - patterns that would traditionally be considered "top-down architecture" tend to be captured in libraries like mvc, Netwire and Cloud Haskell. That is to say, I hope this answer will not be interpreted as an attempt replace any of the others in this thread, just that structural choices can and should ideally be abstracted away in libraries by domain experts. The real difficulty in building large systems, in my opinion, is evaluating these libraries on their architectural "goodness" versus all of your pragmatic concerns.
As liminalisht mentions in the comments, The category design pattern is another post by Gabriel on the topic, in a similar vein.
I have found the paper "Teaching Software Architecture Using Haskell" (pdf) by Alejandro Serrano useful for thinking about large-scale structure in Haskell.
Perhaps you have to go an step back and think of how to translate the description of the problem to a design in the first place. Since Haskell is so high level, it can capture the description of the problem in the form of data structures , the actions as procedures and the pure transformation as functions. Then you have a design. The development start when you compile this code and find concrete errors about missing fields, missing instances and missing monadic transformers in your code, because for example you perform a database Access from a library that need a certain state monad within an IO procedure. And voila, there is the program. The compiler feed your mental sketches and gives coherence to the design and the development.
In such a way you benefit from the help of Haskell since the beginning, and the coding is natural. I would not care to do something "functional" or "pure" or enough general if what you have in mind is a concrete ordinary problem. I think that over-engineering is the most dangerous thing in IT. Things are different when the problem is to create a library that abstract a set of related problems.

what are the most significant disadvantages of using UML?

UML is a great language to model software for business requirements, but there is a growing community that points some disadvantages for some lacking features.
What are the most significant disadvantages that you find crucial for UML and what could it be a good alternative to solve this lacking features?
The biggest one is that it's yet another layer of red tape that gets in the way of just $#%$#% coding the thing and making it work.
The fact that people use it to "model software for business requirements", as you put it, and other such process-oriented claptrap. UML started out as a conventionalised way for programmers to communicate software to other programmers in a pictorial form. In that sense it's just formalised napkin-scribbling - and as such it is very effective. You can draw a UML class diagram on a whiteboard and I can understand it without quibbling over notation.
But somewhere along the line someone got the idea that a drawing notation could somehow be a process in it's own right, or at least a formal part of a larger process. And that's just silly. UML diagrams are a fine way to illustrate books, and quite useful as a means for engineers to scribble ideas back and forth. But that's where it should have ended.
I can say at least three:
It takes a lot of time to keep the diagram reasonable and synchronized with the actual code. UML diagrams don't run, but require a lot of time. So they are good only if your organization size can manage them
You cannot represent every condition in a sequence diagram. It's impossible if you want to deliver. So state diagrams should convey basic facts, not all the possible outcomes.
Good UML software costs money and it takes some time to master properly.
So, I think UML is good as a complementary documentation role, and only if the size of your organization allows it.
Solutions... well, in the end, diagramming is just a way to convey high level information to another person, in space or time (e.g. could be you in some year time). Extreme Programming shifts the burden of information retrieval from dead tree to living brain. Of course, it assumes that the living brain never forgets, and never quits. Extreme programming uses redundancy to reduce the impact of such occurrences. In a large company, a strong layoff round could wipeout entire teams, so storing information into brains can be risky. On the other hand, large companies have human power to waste, hence the diagramming.
Also, as WDuffy points out, if you are a designer, and you have to communicate to a team of programmers what they have to implement, it's much easier to use a UML diagram. Of course, a small company with a small team has generally small goals, and you can organize people with a different style. A small company UMLing will only produce UML diagrams of their revolutionary product, and then it will be bankrupt.
UML is not good nor bad. It can be a good tool, but it must be used in the proper context.
Lacking features?
well, I found that UML is strongly aimed at an Object Oriented vision of the world. Our company mainly developed in python, with a strong focus on module level routines. Objects were lightweight data containers, but all the logic was done at the module level. It's difficult to properly model this implementation style at the UML level, unless you resort to some "hacks" in the terminology. I guess it's difficult to model in UML for functional or procedural languages.
Another thing I find annoying is the assumption of use case modeling as a diagram. My experience is that the best way to convey a use case is to write a short story or a short code tingling the feature you want to convey. The story should be short, one page maximum.
This approach has two advantages: if your story is a written prose, the Q/A team can read and test it easily. If your story is code, you can put it as a functional test and let it run during the night. A diagram does not satisfy any of these value added needs.
One issue with UML is due to its universality: things in UML cannot be always implemented directly in the target language, or some languages have capabilities that cannot be expressed in UML. So it can be better to know the implementation language beforehand, which restrain its universality.
See also the criticisms section on UML wikipedia page:
Standards bloat
Problems in learning and adopting
Cumulative Impedance/Impedance Mismatching
Dysfunctional interchange format
It's not Agile
What should have been the last word on UML was written by frustrated student "Candide Smith", well, really Eiffel author Bertrand Meyer.
Another disadvantage of UML is that it tends to overemphasize design, which can lead to 'analysis paralysis' (people over-analyze their problem) and feature creep (loosing sight of the actual problem). A UML design can only take you so far in solving a problem, and you have to be careful to jump into the code soon enough (but not sooner ;-).
UML is somewhat less applicable to the brave new world of loose typing and NoSQL databases. It has OO ideas of Class as a data structure rather than classification embed in it.
Another disadvantage, although not self-inflicted, is that it doesn't explicitly to facilitate abstraction. Everyone I know uses UML tools for more abstract modelling, but the way standards are written that is not obvious.
Another problem with UML (and big design up front in general) is that it's sometimes hard to anticipate all the nitty gritty implementation problems that you'll run into that may affect your design until you actually start implementing something. Granted, I'm a bioinformatics research programmer that works on small one-man projects, but I don't even believe in any design up front, at least for small projects. I believe in the following:
Make it work. (Just get a prototype up and running that has all the basic functionality, no matter how much it sucks. This forces you to see all the little nitty gritty details that might not come through in a formal analysis. Having an actual implementation of your idea makes it easier to see whether the idea was even really worth doing in the first place or whether it should be scrapped altogether.)
Make it right. (Only now, when you have a working prototype and you know that all the nitty gritty implementation problems are at least in principle solvable do you worry about good design. Refactor the heck out of it to follow good programming practices, reduce coupling, do proper error handling, yada yada yada.)
Make it fast. If it's application code, you'd better have proof that you've found the slow part. If it's generic library code, you'd better have good reason to believe that the piece of code could reasonably be the slow part in some use case for the library, i.e. don't optimize a function that noone would ever call in a loop.
For Class Diagrams in UML it only makes sense to use them if there is automated way to generate code directly from diagram. I have implemented such UML editor tool based on 4-tiers meta levels recommended by OMG (Object Management Group) and we had great success using UML in team of 5 devs over 2 years doing around 20-30 architectural iterations. The diagram was the root artifact of automated build chain making impact on hundreds of derived artifacts, APIs, generated Docs, DDLs, projects, tests etc.
So by itself UML in Class Diagrams part is great "programming" language if you actually do programming in it.
For Class Diagrams in UML if it is not translatable in automated way, then its fail.

Resources