How to understand this `$` usage in Haskell [duplicate] - haskell

This question already has answers here:
What does $ mean/do in Haskell?
(2 answers)
Closed 8 years ago.
This happens in the situation you want to apply bunch of functions to the same variable, it may look like this:
map (\f->f 4) [odd, even]
but from LYAH using $ make it very neat
map ($ 4) [odd, even]
why does it work. first I type it in ghci like $ 4 odd, it failed, then I type ($ 4) odd, which works fine. then I check the type of ($ 4) using :t which shows ($ 4) :: Num a => (a -> b) -> b, odd is odd :: Integral a => a -> Bool. It seems make sense, but still not clear to me.
Can anyone explain it clearly, is it another common usage of $, and is there other more usage of $.

Anatomy of the operator
The $ application operator is in the form:
($) :: (a -> b) -> a -> b
It's often seen in situation when you want to avoid a trailing pair of parenthesis:
func a (b + c)
is equal to:
func a $ b + c
The magic behind this is simply explained in its fixity declaration:
infixr 0
This means: everything that is after $ will be grouped into a single entity, just like if they where enclosed in parenthesis.
Of course this can be also "nested" like so:
func a $ b + other $ c - d
which means:
func a (b + other (c - d))
Application operator as function
Your case is very interesting and, in my experience, not used very often.
Let's analyze this:
map ($ 4) [odd, even]
We know that map's type is:
map :: (a -> b) -> [a] -> [b]
The behavior, if someone forgot, is: take the first argument (a function from a to b) and apply it to every a in the second argument list, finally return the resulting list.
You can see ($ 4) as "pass 4 as argument to something". Which means that:
($ 4) func
is the same as:
func $ 4
So:
map ($ 4) [odd, even]
means:
[($ 4) odd, ($ 4) even]
[(odd $ 4), (even $ 4)]
[False, True]
Why (func $) is not necessary
You could argue that, just like you can do (/ 4) and (2 /) which respectively means "divide something by 4" and "divide 2 by something", you could do ($ 4) and (func $) and you would be right.
In fact:
(func $) 4
is the same as:
func $ 4
func 4
which is the same as:
($ 4) func
But the reality is that:
map (func $) [...]
would be unnecessary, since the first argument of map is always applied to each argument to the list, making the above the same as:
map func [...]

Infix operators like *, ++, or $ typically take two arguments as in
x ++ y
When one argument is missing, and they are put between parentheses, they instead form a section:
(x ++)
(++ y)
These sections are equivalent to, respectively,
\y -> x ++ y
\x -> x ++ y
i.e., they stand for the function that maps the "missing argument" to the result. For instance,
map ("A"++) ["a","b"] == [ "Aa","Ab" ]
map (++"A") ["a","b"] == [ "aA","bA" ]
Operator $ is not special in this respect. We have
(f $)
($ x)
which stands for
\x -> f $ x
\f -> f $ x
The first is not very useful, since (f $) is \x -> f $ x which is (eta-)equivalent to just f (*). The second is instead useful.
(*) To be picky, seq can distinguish between undefined and (undefined $), but this is a minor difference in practice.

$ 4 odd: This won't work because operators must be surrounded by parentheses when not used in infix form. If you were to do ($) 4 odd, this wouldn't work because argument order is incorrect, you want 4 to be the second argument. You could write ($) odd 4 though.
($ 4) odd: This does work because it's using operator sections, and here the 4 is provided as the second argument to $. It's like (++ "world") "hello " being the same as "hello " ++ "world".
When you have ($ 4) :: Num a => (a -> b) -> b, and odd :: Integral a => a -> Bool, you just need to line up the types. Since every Integral a is also a Num a, we can just "upgrade" (constrain) the Num to Integral for this to work:
($ 4) :: Integral a => (a -> b) -> b
odd :: Integral a => a -> Bool
So a ~ a and b ~ Bool, so you can say that
($ 4) :: Integral a => (a -> Bool) -> Bool
So applying it to odd gives us
($ 4) odd :: Bool
This is because ($ 4) odd is the same as odd $ 4. Looking at the definition of $:
f $ x = f x
We can say that
odd $ 4 = odd 4
Which evaluates to False.

Related

Difficulty understanding the below function in haskell [duplicate]

What is the difference between the dot (.) and the dollar sign ($)?
As I understand it, they are both syntactic sugar for not needing to use parentheses.
The $ operator is for avoiding parentheses. Anything appearing after it will take precedence over anything that comes before.
For example, let's say you've got a line that reads:
putStrLn (show (1 + 1))
If you want to get rid of those parentheses, any of the following lines would also do the same thing:
putStrLn (show $ 1 + 1)
putStrLn $ show (1 + 1)
putStrLn $ show $ 1 + 1
The primary purpose of the . operator is not to avoid parentheses, but to chain functions. It lets you tie the output of whatever appears on the right to the input of whatever appears on the left. This usually also results in fewer parentheses, but works differently.
Going back to the same example:
putStrLn (show (1 + 1))
(1 + 1) doesn't have an input, and therefore cannot be used with the . operator.
show can take an Int and return a String.
putStrLn can take a String and return an IO ().
You can chain show to putStrLn like this:
(putStrLn . show) (1 + 1)
If that's too many parentheses for your liking, get rid of them with the $ operator:
putStrLn . show $ 1 + 1
They have different types and different definitions:
infixr 9 .
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)
infixr 0 $
($) :: (a -> b) -> a -> b
f $ x = f x
($) is intended to replace normal function application but at a different precedence to help avoid parentheses. (.) is for composing two functions together to make a new function.
In some cases they are interchangeable, but this is not true in general. The typical example where they are is:
f $ g $ h $ x
==>
f . g . h $ x
In other words in a chain of $s, all but the final one can be replaced by .
Also note that ($) is the identity function specialised to function types. The identity function looks like this:
id :: a -> a
id x = x
While ($) looks like this:
($) :: (a -> b) -> (a -> b)
($) = id
Note that I've intentionally added extra parentheses in the type signature.
Uses of ($) can usually be eliminated by adding parenthesis (unless the operator is used in a section). E.g.: f $ g x becomes f (g x).
Uses of (.) are often slightly harder to replace; they usually need a lambda or the introduction of an explicit function parameter. For example:
f = g . h
becomes
f x = (g . h) x
becomes
f x = g (h x)
($) allows functions to be chained together without adding parentheses to control evaluation order:
Prelude> head (tail "asdf")
's'
Prelude> head $ tail "asdf"
's'
The compose operator (.) creates a new function without specifying the arguments:
Prelude> let second x = head $ tail x
Prelude> second "asdf"
's'
Prelude> let second = head . tail
Prelude> second "asdf"
's'
The example above is arguably illustrative, but doesn't really show the convenience of using composition. Here's another analogy:
Prelude> let third x = head $ tail $ tail x
Prelude> map third ["asdf", "qwer", "1234"]
"de3"
If we only use third once, we can avoid naming it by using a lambda:
Prelude> map (\x -> head $ tail $ tail x) ["asdf", "qwer", "1234"]
"de3"
Finally, composition lets us avoid the lambda:
Prelude> map (head . tail . tail) ["asdf", "qwer", "1234"]
"de3"
The short and sweet version:
($) calls the function which is its left-hand argument on the value which is its right-hand argument.
(.) composes the function which is its left-hand argument on the function which is its right-hand argument.
One application that is useful and took me some time to figure out from the very short description at Learn You a Haskell: Since
f $ x = f x
and parenthesizing the right hand side of an expression containing an infix operator converts it to a prefix function, one can write ($ 3) (4 +) analogous to (++ ", world") "hello".
Why would anyone do this? For lists of functions, for example. Both:
map (++ ", world") ["hello", "goodbye"]
map ($ 3) [(4 +), (3 *)]
are shorter than
map (\x -> x ++ ", world") ["hello", "goodbye"]
map (\f -> f 3) [(4 +), (3 *)]
Obviously, the latter variants would be more readable for most people.
Haskell: difference between . (dot) and $ (dollar sign)
What is the difference between the dot (.) and the dollar sign ($)?. As I understand it, they are both syntactic sugar for not needing to use parentheses.
They are not syntactic sugar for not needing to use parentheses - they are functions, - infixed, thus we may call them operators.
Compose, (.), and when to use it.
(.) is the compose function. So
result = (f . g) x
is the same as building a function that passes the result of its argument passed to g on to f.
h = \x -> f (g x)
result = h x
Use (.) when you don't have the arguments available to pass to the functions you wish to compose.
Right associative apply, ($), and when to use it
($) is a right-associative apply function with low binding precedence. So it merely calculates the things to the right of it first. Thus,
result = f $ g x
is the same as this, procedurally (which matters since Haskell is evaluated lazily, it will begin to evaluate f first):
h = f
g_x = g x
result = h g_x
or more concisely:
result = f (g x)
Use ($) when you have all the variables to evaluate before you apply the preceding function to the result.
We can see this by reading the source for each function.
Read the Source
Here's the source for (.):
-- | Function composition.
{-# INLINE (.) #-}
-- Make sure it has TWO args only on the left, so that it inlines
-- when applied to two functions, even if there is no final argument
(.) :: (b -> c) -> (a -> b) -> a -> c
(.) f g = \x -> f (g x)
And here's the source for ($):
-- | Application operator. This operator is redundant, since ordinary
-- application #(f x)# means the same as #(f '$' x)#. However, '$' has
-- low, right-associative binding precedence, so it sometimes allows
-- parentheses to be omitted; for example:
--
-- > f $ g $ h x = f (g (h x))
--
-- It is also useful in higher-order situations, such as #'map' ('$' 0) xs#,
-- or #'Data.List.zipWith' ('$') fs xs#.
{-# INLINE ($) #-}
($) :: (a -> b) -> a -> b
f $ x = f x
Conclusion
Use composition when you do not need to immediately evaluate the function. Maybe you want to pass the function that results from composition to another function.
Use application when you are supplying all arguments for full evaluation.
So for our example, it would be semantically preferable to do
f $ g x
when we have x (or rather, g's arguments), and do:
f . g
when we don't.
... or you could avoid the . and $ constructions by using pipelining:
third xs = xs |> tail |> tail |> head
That's after you've added in the helper function:
(|>) x y = y x
My rule is simple (I'm beginner too):
do not use . if you want to pass the parameter (call the function), and
do not use $ if there is no parameter yet (compose a function)
That is
show $ head [1, 2]
but never:
show . head [1, 2]
A great way to learn more about anything (any function) is to remember that everything is a function! That general mantra helps, but in specific cases like operators, it helps to remember this little trick:
:t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c
and
:t ($)
($) :: (a -> b) -> a -> b
Just remember to use :t liberally, and wrap your operators in ()!
All the other answers are pretty good. But there’s an important usability detail about how ghc treats $, that the ghc type checker allows for instatiarion with higher rank/ quantified types. If you look at the type of $ id for example you’ll find it’s gonna take a function whose argument is itself a polymorphic function. Little things like that aren’t given the same flexibility with an equivalent upset operator. (This actually makes me wonder if $! deserves the same treatment or not )
The most important part about $ is that it has the lowest operator precedence.
If you type info you'll see this:
λ> :info ($)
($) :: (a -> b) -> a -> b
-- Defined in ‘GHC.Base’
infixr 0 $
This tells us it is an infix operator with right-associativity that has the lowest possible precedence. Normal function application is left-associative and has highest precedence (10). So $ is something of the opposite.
So then we use it where normal function application or using () doesn't work.
So, for example, this works:
λ> head . sort $ "example"
λ> e
but this does not:
λ> head . sort "example"
because . has lower precedence than sort and the type of (sort "example") is [Char]
λ> :type (sort "example")
(sort "example") :: [Char]
But . expects two functions and there isn't a nice short way to do this because of the order of operations of sort and .
I think a short example of where you would use . and not $ would help clarify things.
double x = x * 2
triple x = x * 3
times6 = double . triple
:i times6
times6 :: Num c => c -> c
Note that times6 is a function that is created from function composition.

How swedish is a very very swedish greeting?

Consider the following Haskell definitions, taken from this excellent Haskell video on YouTube:
import Data.List
greeting = "Hello"
swedish = intersperse 'f'
very f x = f (f (f x))
If we load them into GHCi, we see the following results:
ghci> swedish greeting
"Hfeflflfo"
ghci> very swedish greeting
"Hfffffffeffffffflffffffflfffffffo"
ghci> very very swedish greeting
"Hffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
fffffffffffffffffffffffffffff... (536,870,913 chars total)
The first two outputs I understand perfectly. A swedish greeting comes out interspersed with fs, and a very swedish greeting is just a swedish (swedish (swedish greeting)), which comes out triply interspersed.
But what exactly is happening in the third input line? My (rather incomplete) understanding of Haskell syntax says that a space-separated sequence of expressions is interpreted as a function call, where the first expression is the function and the rest are the arguments. In that case, how is the outermost very being called with three arguments (very, swedish, and greeting) when it's only defined to accept two?
If it helps, it appears that a very very swedish greeting is equivalent to a swedish $ swedish $ swedish $ swedish $ ... (27 layers of swedish) ... $ swedish $ swedish greeting.
You said:
My (rather incomplete) understanding of Haskell syntax says that a space-separated sequence of expressions is interpreted as a function call, where the first expression is the function and the rest are the arguments.
You are correct that this is not a complete understanding of what is actually going on. From your example:
very very swedish greeting
This is the same as:
((very very) swedish) greeting
This is because function application is left associative. Furthermore, every function in Haskell takes one input and returns one result. What you think of as functions accepting multiple inputs are, in reality, functions that accept a single input and return a function as their result.
This also explains why arrows (->) delimit function inputs and results in function types. Consider the type of ++:
(++) :: [a] -> [a] -> [a]
This is the same as:
(++) :: [a] -> ([a] -> [a])
You may think of the ++ operator as taking two lists and returning a list, but in reality it is a function of one input (a list) that returns a function of one input (another list) that returns a list.
Taken all together, you can hopefully see that very very is a valid expression by itself (and happens to have the same type as very).
very very x
is equivalent to:
very (very (very x))
Function application is left associative, so
very very swedish greeting
is equivalent to
((very very) swedish) greeting
very has type (t -> t) -> t -> t. very can be passed as the first argument to very
very :: (t -> t ) -> t -> t
very :: (t -> t) -> (t -> t)
very very :: (t -> t) -> (t -> t)
very very is also a function, it has the type (t -> t) -> t -> t. Since swedish has the type String -> String it can be passed to very very. The resulting function has type String -> String
((very very) swedish) :: String -> String
A function with type String -> String can be applied to greeting :: String
(((very very) swedish) greeting) :: String
Daniel Pratt's answer explains what is happening on the syntactic level. But why does (very very) result in swedish being applied 27 times and not some other number? In order to figure this out, let's make a function that is more general than very which applies a function n times:
-- Takes number of times to apply `n` and a function `f`, and returns a
-- function that applies `f` `n` times.
appn n f
| n == 1 = f
| otherwise = f . (appn (n - 1) f)
-- If necessary, you could define very = (appn 3)
very = (appn 3)
And let's stop using swedish and instead use (+1) so it's easier to count how many times the function is applied:
Vandelay Industries> (appn 3) (appn 3) (+1) 0
27
Vandelay Industries> (appn 2) (appn 3) (+1) 0
9
Vandelay Industries> (appn 2) (appn 4) (+1) 0
16
Vandelay Industries> (appn 4) (appn 10) (+1) 0
10000
Vandelay Industries> (appn 2) (appn 2) (appn 2) (+1) 0
16
You may see the pattern by now. (appn x) (appn y) generates the equivalent of appn $ y ^ x. But why? Consider (appn 2) (appn 3). The (appn 3) means f (f (f x)) or f . f . f. Put that through (appn 2) and each f is actually applied 3 times: (f . f . f) . (f . f . f) . (f . f . f) or 9 times total.

Dollar sign inside closed parens [duplicate]

This question already has answers here:
What does $ mean/do in Haskell?
(2 answers)
Closed 6 years ago.
Websocket snippet has a statement that has dollar sign inside closed parens like this,
any ($ fst client)
Since haskellers use $ sign instead of parens, why do we need parens here?
Why is there a $ symbol between parens?
I tried to see if $ is a function by doing
Prelude>:t $
But it threw the error, parse error on input $
In Haskell, operators are just normal functions that have names made up of symbols and used infix by default. You can use them just like a normal identifier by wrapping them in parentheses:
λ> :t (+)
(+) :: Num a => a -> a -> a
$ is just an operator like this itself. It represents function application and is defined as follows:
f $ x = f x
You can get its type just like (+):
λ> :t ($)
($) :: (a -> b) -> a -> b
Haskell operators can also be partially applied like normal functions, by wrapping them in parentheses with arguments to one side. For example, (+ 1) is the same as \ x -> x + 1 and (1 +) is the same as \x -> 1 + x.
This applies to $ too, so ($ fst client) is the same as \ f -> f $ fst client or just \ f -> f (fst client). The code snippet you have checks if any of a list of functions returns true given fst client.
($ fst client) is an operator section (just like (+ 1) or (* 2)) - it partially applies the operator to its right operand. A more verbose way to write it would be (\f -> f $ fst client).
So you're applying any to a function that takes another function and applies that function to the argument fst client.

How does currying work?

I'm very new to Haskell and FP in general. I've read many of the writings that describe what currying is, but I haven't found an explanation to how it actually works.
Here is a function: (+) :: a -> (a -> a)
If I do (+) 4 7, the function takes 4 and returns a function that takes 7 and returns 11. But what happens to 4 ? What does that first function do with 4? What does (a -> a) do with 7?
Things get more confusing when I think about a more complicated function:
max' :: Int -> (Int -> Int)
max' m n | m > n = m
| otherwise = n
what does (Int -> Int) compare its parameter to? It only takes one parameter, but it needs two to do m > n.
Understanding higher-order functions
Haskell, as a functional language, supports higher-order functions (HOFs). In mathematics HOFs are called functionals, but you don't need any mathematics to understand them. In usual imperative programming, like in Java, functions can accept values, like integers and strings, do something with them, and return back a value of some other type.
But what if functions themselves were no different from values, and you could accept a function as an argument or return it from another function? f a b c = a + b - c is a boring function, it sums a and b and then substracts c. But the function could be more interesting, if we could generalize it, what if we'd want sometimes to sum a and b, but sometimes multiply? Or divide by c instead of subtracting?
Remember, (+) is just a function of 2 numbers that returns a number, there's nothing special about it, so any function of 2 numbers that returns a number could be in place of it. Writing g a b c = a * b - c, h a b c = a + b / c and so on just doesn't cut it for us, we need a general solution, we are programmers after all! Here how it is done in Haskell:
let f g h a b c = a `g` b `h` c in f (*) (/) 2 3 4 -- returns 1.5
And you can return functions too. Below we create a function that accepts a function and an argument and returns another function, which accepts a parameter and returns a result.
let g f n = (\m -> m `f` n); f = g (+) 2 in f 10 -- returns 12
A (\m -> m `f` n) construct is an anonymous function of 1 argument m that applies f to that m and n. Basically, when we call g (+) 2 we create a function of one argument, that just adds 2 to whatever it receives. So let f = g (+) 2 in f 10 equals 12 and let f = g (*) 5 in f 5 equals 25.
(See also my explanation of HOFs using Scheme as an example.)
Understanding currying
Currying is a technique that transforms a function of several arguments to a function of 1 argument that returns a function of 1 argument that returns a function of 1 argument... until it returns a value. It's easier than it sounds, for example we have a function of 2 arguments, like (+).
Now imagine that you could give only 1 argument to it, and it would return a function? You could use this function later to add this 1st argument, now encased in this new function, to something else. E.g.:
f n = (\m -> n - m)
g = f 10
g 8 -- would return 2
g 4 -- would return 6
Guess what, Haskell curries all functions by default. Technically speaking, there are no functions of multiple arguments in Haskell, only functions of one argument, some of which may return new functions of one argument.
It's evident from the types. Write :t (++) in interpreter, where (++) is a function that concatenates 2 strings together, it will return (++) :: [a] -> [a] -> [a]. The type is not [a],[a] -> [a], but [a] -> [a] -> [a], meaning that (++) accepts one list and returns a function of type [a] -> [a]. This new function can accept yet another list, and it will finally return a new list of type [a].
That's why function application syntax in Haskell has no parentheses and commas, compare Haskell's f a b c with Python's or Java's f(a, b, c). It's not some weird aesthetic decision, in Haskell function application goes from left to right, so f a b c is actually (((f a) b) c), which makes complete sense, once you know that f is curried by default.
In types, however, the association is from right to left, so [a] -> [a] -> [a] is equivalent to [a] -> ([a] -> [a]). They are the same thing in Haskell, Haskell treats them exactly the same. Which makes sense, because when you apply only one argument, you get back a function of type [a] -> [a].
On the other hand, check the type of map: (a -> b) -> [a] -> [b], it receives a function as its first argument, and that's why it has parentheses.
To really hammer down the concept of currying, try to find the types of the following expressions in the interpreter:
(+)
(+) 2
(+) 2 3
map
map (\x -> head x)
map (\x -> head x) ["conscience", "do", "cost"]
map head
map head ["conscience", "do", "cost"]
Partial application and sections
Now that you understand HOFs and currying, Haskell gives you some syntax to make code shorter. When you call a function with 1 or multiple arguments to get back a function that still accepts arguments, it's called partial application.
You understand already that instead of creating anonymous functions you can just partially apply a function, so instead of writing (\x -> replicate 3 x) you can just write (replicate 3). But what if you want to have a divide (/) operator instead of replicate? For infix functions Haskell allows you to partially apply it using either of arguments.
This is called sections: (2/) is equivalent to (\x -> 2 / x) and (/2) is equivalent to (\x -> x / 2). With backticks you can take a section of any binary function: (2`elem`) is equivalent to (\xs -> 2 `elem` xs).
But remember, any function is curried by default in Haskell and therefore always accepts one argument, so sections can be actually used with any function: let (+^) be some weird function that sums 4 arguments, then let (+^) a b c d = a + b + c in (2+^) 3 4 5 returns 14.
Compositions
Other handy tools to write concise and flexible code are composition and application operator. Composition operator (.) chains functions together. Application operator ($) just applies function on the left side to the argument on the right side, so f $ x is equivalent to f x. However ($) has the lowest precedence of all operators, so we can use it to get rid of parentheses: f (g x y) is equivalent to f $ g x y.
It is also helpful when we need to apply multiple functions to the same argument: map ($2) [(2+), (10-), (20/)] would yield [4,8,10]. (f . g . h) (x + y + z), f (g (h (x + y + z))), f $ g $ h $ x + y + z and f . g . h $ x + y + z are equivalent, but (.) and ($) are different things, so read Haskell: difference between . (dot) and $ (dollar sign) and parts from Learn You a Haskell to understand the difference.
You can think of it like that the function stores the argument and returns a new function that just demands the other argument(s). The new function already knows the first argument, as it is stored together with the function. This is handled internally by the compiler. If you want to know how this works exactly, you may be interested in this page although it may be a bit complicated if you are new to Haskell.
If a function call is fully saturated (so all arguments are passed at the same time), most compilers use an ordinary calling scheme, like in C.
Does this help?
max' = \m -> \n -> if (m > n)
then m
else n
Written as lambdas. max' is a value of a lambda that itself returns a lambda given some m, which returns the value.
Hence max' 4 is
max' 4 = \n -> if (4 > n)
then 4
else n
Something that may help is to think about how you could implement curry as a higher order function if Haskell didn't have built in support for it. Here is a Haskell implementation that works for a function on two arguments.
curry :: (a -> b -> c) -> a -> (b -> c)
curry f a = \b -> f a b
Now you can pass curry a function on two arguments and the first argument and it will return a function on one argument (this is an example of a closure.)
In ghci:
Prelude> let curry f a = \b -> f a b
Prelude> let g = curry (+) 5
Prelude> g 10
15
Prelude> g 15
20
Prelude>
Fortunately we don't have to do this in Haskell (you do in Lisp if you want currying) because support is built into the language.
If you come from C-like languages, their syntax might help you to understand it. For example in PHP the add function could be implemented as such:
function add($a) {
return function($b) use($a) {
return $a + $b;
};
}
Haskell is based on Lambda calculus. Internally what happens is that everything gets converted into a function. So your compiler evaluates (+) as follows
(+) :: Num a => a -> a -> a
(+) x y = \x -> (\y -> x + y)
That is, (+) :: a -> a -> a is essentially the same as (+) :: a -> (a -> a). Hope this helps.

What is the difference between . (dot) and $ (dollar sign)?

What is the difference between the dot (.) and the dollar sign ($)?
As I understand it, they are both syntactic sugar for not needing to use parentheses.
The $ operator is for avoiding parentheses. Anything appearing after it will take precedence over anything that comes before.
For example, let's say you've got a line that reads:
putStrLn (show (1 + 1))
If you want to get rid of those parentheses, any of the following lines would also do the same thing:
putStrLn (show $ 1 + 1)
putStrLn $ show (1 + 1)
putStrLn $ show $ 1 + 1
The primary purpose of the . operator is not to avoid parentheses, but to chain functions. It lets you tie the output of whatever appears on the right to the input of whatever appears on the left. This usually also results in fewer parentheses, but works differently.
Going back to the same example:
putStrLn (show (1 + 1))
(1 + 1) doesn't have an input, and therefore cannot be used with the . operator.
show can take an Int and return a String.
putStrLn can take a String and return an IO ().
You can chain show to putStrLn like this:
(putStrLn . show) (1 + 1)
If that's too many parentheses for your liking, get rid of them with the $ operator:
putStrLn . show $ 1 + 1
They have different types and different definitions:
infixr 9 .
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)
infixr 0 $
($) :: (a -> b) -> a -> b
f $ x = f x
($) is intended to replace normal function application but at a different precedence to help avoid parentheses. (.) is for composing two functions together to make a new function.
In some cases they are interchangeable, but this is not true in general. The typical example where they are is:
f $ g $ h $ x
==>
f . g . h $ x
In other words in a chain of $s, all but the final one can be replaced by .
Also note that ($) is the identity function specialised to function types. The identity function looks like this:
id :: a -> a
id x = x
While ($) looks like this:
($) :: (a -> b) -> (a -> b)
($) = id
Note that I've intentionally added extra parentheses in the type signature.
Uses of ($) can usually be eliminated by adding parenthesis (unless the operator is used in a section). E.g.: f $ g x becomes f (g x).
Uses of (.) are often slightly harder to replace; they usually need a lambda or the introduction of an explicit function parameter. For example:
f = g . h
becomes
f x = (g . h) x
becomes
f x = g (h x)
($) allows functions to be chained together without adding parentheses to control evaluation order:
Prelude> head (tail "asdf")
's'
Prelude> head $ tail "asdf"
's'
The compose operator (.) creates a new function without specifying the arguments:
Prelude> let second x = head $ tail x
Prelude> second "asdf"
's'
Prelude> let second = head . tail
Prelude> second "asdf"
's'
The example above is arguably illustrative, but doesn't really show the convenience of using composition. Here's another analogy:
Prelude> let third x = head $ tail $ tail x
Prelude> map third ["asdf", "qwer", "1234"]
"de3"
If we only use third once, we can avoid naming it by using a lambda:
Prelude> map (\x -> head $ tail $ tail x) ["asdf", "qwer", "1234"]
"de3"
Finally, composition lets us avoid the lambda:
Prelude> map (head . tail . tail) ["asdf", "qwer", "1234"]
"de3"
The short and sweet version:
($) calls the function which is its left-hand argument on the value which is its right-hand argument.
(.) composes the function which is its left-hand argument on the function which is its right-hand argument.
One application that is useful and took me some time to figure out from the very short description at Learn You a Haskell: Since
f $ x = f x
and parenthesizing the right hand side of an expression containing an infix operator converts it to a prefix function, one can write ($ 3) (4 +) analogous to (++ ", world") "hello".
Why would anyone do this? For lists of functions, for example. Both:
map (++ ", world") ["hello", "goodbye"]
map ($ 3) [(4 +), (3 *)]
are shorter than
map (\x -> x ++ ", world") ["hello", "goodbye"]
map (\f -> f 3) [(4 +), (3 *)]
Obviously, the latter variants would be more readable for most people.
Haskell: difference between . (dot) and $ (dollar sign)
What is the difference between the dot (.) and the dollar sign ($)?. As I understand it, they are both syntactic sugar for not needing to use parentheses.
They are not syntactic sugar for not needing to use parentheses - they are functions, - infixed, thus we may call them operators.
Compose, (.), and when to use it.
(.) is the compose function. So
result = (f . g) x
is the same as building a function that passes the result of its argument passed to g on to f.
h = \x -> f (g x)
result = h x
Use (.) when you don't have the arguments available to pass to the functions you wish to compose.
Right associative apply, ($), and when to use it
($) is a right-associative apply function with low binding precedence. So it merely calculates the things to the right of it first. Thus,
result = f $ g x
is the same as this, procedurally (which matters since Haskell is evaluated lazily, it will begin to evaluate f first):
h = f
g_x = g x
result = h g_x
or more concisely:
result = f (g x)
Use ($) when you have all the variables to evaluate before you apply the preceding function to the result.
We can see this by reading the source for each function.
Read the Source
Here's the source for (.):
-- | Function composition.
{-# INLINE (.) #-}
-- Make sure it has TWO args only on the left, so that it inlines
-- when applied to two functions, even if there is no final argument
(.) :: (b -> c) -> (a -> b) -> a -> c
(.) f g = \x -> f (g x)
And here's the source for ($):
-- | Application operator. This operator is redundant, since ordinary
-- application #(f x)# means the same as #(f '$' x)#. However, '$' has
-- low, right-associative binding precedence, so it sometimes allows
-- parentheses to be omitted; for example:
--
-- > f $ g $ h x = f (g (h x))
--
-- It is also useful in higher-order situations, such as #'map' ('$' 0) xs#,
-- or #'Data.List.zipWith' ('$') fs xs#.
{-# INLINE ($) #-}
($) :: (a -> b) -> a -> b
f $ x = f x
Conclusion
Use composition when you do not need to immediately evaluate the function. Maybe you want to pass the function that results from composition to another function.
Use application when you are supplying all arguments for full evaluation.
So for our example, it would be semantically preferable to do
f $ g x
when we have x (or rather, g's arguments), and do:
f . g
when we don't.
... or you could avoid the . and $ constructions by using pipelining:
third xs = xs |> tail |> tail |> head
That's after you've added in the helper function:
(|>) x y = y x
My rule is simple (I'm beginner too):
do not use . if you want to pass the parameter (call the function), and
do not use $ if there is no parameter yet (compose a function)
That is
show $ head [1, 2]
but never:
show . head [1, 2]
A great way to learn more about anything (any function) is to remember that everything is a function! That general mantra helps, but in specific cases like operators, it helps to remember this little trick:
:t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c
and
:t ($)
($) :: (a -> b) -> a -> b
Just remember to use :t liberally, and wrap your operators in ()!
All the other answers are pretty good. But there’s an important usability detail about how ghc treats $, that the ghc type checker allows for instatiarion with higher rank/ quantified types. If you look at the type of $ id for example you’ll find it’s gonna take a function whose argument is itself a polymorphic function. Little things like that aren’t given the same flexibility with an equivalent upset operator. (This actually makes me wonder if $! deserves the same treatment or not )
The most important part about $ is that it has the lowest operator precedence.
If you type info you'll see this:
λ> :info ($)
($) :: (a -> b) -> a -> b
-- Defined in ‘GHC.Base’
infixr 0 $
This tells us it is an infix operator with right-associativity that has the lowest possible precedence. Normal function application is left-associative and has highest precedence (10). So $ is something of the opposite.
So then we use it where normal function application or using () doesn't work.
So, for example, this works:
λ> head . sort $ "example"
λ> e
but this does not:
λ> head . sort "example"
because . has lower precedence than sort and the type of (sort "example") is [Char]
λ> :type (sort "example")
(sort "example") :: [Char]
But . expects two functions and there isn't a nice short way to do this because of the order of operations of sort and .
I think a short example of where you would use . and not $ would help clarify things.
double x = x * 2
triple x = x * 3
times6 = double . triple
:i times6
times6 :: Num c => c -> c
Note that times6 is a function that is created from function composition.

Resources