Loss of precision 'sqrt' Haskell - haskell

In the ghci terminal, I was computing some equations with Haskell using the sqrt function.
I notice that I would sometimes lose precision in my sqrt result, when it was supposed to be simplified.
For example,
sqrt 4 * sqrt 4 = 4 -- This works well!
sqrt 2 * sqrt 2 = 2.0000000000000004 -- Not the exact result.
Normally, I would expect a result of 2.
Is there a way to get the right simplification result?
How does that work in Haskell?

There are usable precise number libraries in Haskell. Two that come to mind are cyclotomic and the CReal module in the numbers package. (Cyclotomic numbers don't support all the operations on complex numbers that you might like, but square roots of integers and rationals are in the domain.)
>>> import Data.Complex.Cyclotomic
>>> sqrtInteger 2
e(8) - e(8)^3
>>> toReal $ sqrtInteger 2
Just 1.414213562373095 -- Maybe Double
>>> sqrtInteger 2 * sqrtInteger 2
2
>>> toReal $ sqrtInteger 2 * sqrtInteger 2
Just 2.0
>>> rootsQuadEq 3 2 1
Just (-1/3 + 1/3*e(8) + 1/3*e(8)^3,-1/3 - 1/3*e(8) - 1/3*e(8)^3)
>>> let eq x = 3*x*x + 2*x + 1
>>> eq (-1/3 + 1/3*e(8) + 1/3*e(8)^3)
0
>>> import Data.Number.CReal
>>> sqrt 2 :: CReal
1.4142135623730950488016887242096980785697 -- Show instance cuts off at 40th place
>>> sqrt 2 * sqrt 2 :: CReal
2.0
>>> sin 3 :: CReal
0.1411200080598672221007448028081102798469
>>> sin 3*sin 3 + cos 3*cos 3 :: CReal
1.0

You do not lose precision. You have limited precision.
The square root of 2 is a real number but not a rational number, therefore it's value cannot be represented exactly by any computer (except representing it symbolically, of course).
Even if you define a very large precision type, it will not be able to represent the square root of 2 exactly. You may get more precision, but never enough to represent that value exactly (unless you have a computer with infinite memory, in which case please hire me).

The explanation for these results lies in the type of the values returned by the sqrt function:
> :t sqrt
sqrt :: Floating a => a -> a
The Floating a means that the value returned belongs to the Floating type class.
The values of all types belonging to this class are stored as floating point numbers. These sacrifice precision for the sake of covering a larger range of numbers.
Double precision floating point numbers can cover very large ranges but they have limited precision and cannot encode all possible numbers. The square root of 2 (√2) is one such number:
> sqrt 2
1.4142135623730951
> sqrt 2 + 0.000000000000000001
1.4142135623730951
As you see above, it is impossible for double precision floating point numbers to be precise enough to represent √2 + 0.000000000000000001, it is simply rounded to the closest approximation which can be expressed using floating point encoding.
As mentioned by another poster, √2 is an irrational number which can be simplified to mean that it requires an infinite number of digits to represent correctly. As such it cannot be represented faithfully using floating point numbers. This leads to errors such as the one you noticed when multiplying it with itself.
You can learn about floating points on their wikipedia page: http://en.wikipedia.org/wiki/Floating_point.
I especially recommend that you read the answer to this other Stack Overflow question: Floating Point Limitations and follow the mentioned link, it will help you understand what's going on under the hood.
Note that this is a problem in every language, not just Haskell. One way to get rid of it entirely is to use symbolic computation libraries but they are much slower than the floating point numbers offered by CPUs. For many computations the loss of precision due to floating points is not a problem.

Related

math.sqrt function python gives same result for two different values [duplicate]

Why does the math module return the wrong result?
First test
A = 12345678917
print 'A =',A
B = sqrt(A**2)
print 'B =',int(B)
Result
A = 12345678917
B = 12345678917
Here, the result is correct.
Second test
A = 123456758365483459347856
print 'A =',A
B = sqrt(A**2)
print 'B =',int(B)
Result
A = 123456758365483459347856
B = 123456758365483467538432
Here the result is incorrect.
Why is that the case?
Because math.sqrt(..) first casts the number to a floating point and floating points have a limited mantissa: it can only represent part of the number correctly. So float(A**2) is not equal to A**2. Next it calculates the math.sqrt which is also approximately correct.
Most functions working with floating points will never be fully correct to their integer counterparts. Floating point calculations are almost inherently approximative.
If one calculates A**2 one gets:
>>> 12345678917**2
152415787921658292889L
Now if one converts it to a float(..), one gets:
>>> float(12345678917**2)
1.5241578792165828e+20
But if you now ask whether the two are equal:
>>> float(12345678917**2) == 12345678917**2
False
So information has been lost while converting it to a float.
You can read more about how floats work and why these are approximative in the Wikipedia article about IEEE-754, the formal definition on how floating points work.
The documentation for the math module states "It provides access to the mathematical functions defined by the C standard." It also states "Except when explicitly noted otherwise, all return values are floats."
Those together mean that the parameter to the square root function is a float value. In most systems that means a floating point value that fits into 8 bytes, which is called "double" in the C language. Your code converts your integer value into such a value before calculating the square root, then returns such a value.
However, the 8-byte floating point value can store at most 15 to 17 significant decimal digits. That is what you are getting in your results.
If you want better precision in your square roots, use a function that is guaranteed to give full precision for an integer argument. Just do a web search and you will find several. Those usually do a variation of the Newton-Raphson method to iterate and eventually end at the correct answer. Be aware that this is significantly slower that the math module's sqrt function.
Here is a routine that I modified from the internet. I can't cite the source right now. This version also works for non-integer arguments but just returns the integer part of the square root.
def isqrt(x):
"""Return the integer part of the square root of x, even for very
large values."""
if x < 0:
raise ValueError('square root not defined for negative numbers')
n = int(x)
if n == 0:
return 0
a, b = divmod(n.bit_length(), 2)
x = (1 << (a+b)) - 1
while True:
y = (x + n//x) // 2
if y >= x:
return x
x = y
If you want to calculate sqrt of really large numbers and you need exact results, you can use sympy:
import sympy
num = sympy.Integer(123456758365483459347856)
print(int(num) == int(sympy.sqrt(num**2)))
The way floating-point numbers are stored in memory makes calculations with them prone to slight errors that can nevertheless be significant when exact results are needed. As mentioned in one of the comments, the decimal library can help you here:
>>> A = Decimal(12345678917)
>>> A
Decimal('123456758365483459347856')
>>> B = A.sqrt()**2
>>> B
Decimal('123456758365483459347856.0000')
>>> A == B
True
>>> int(B)
123456758365483459347856
I use version 3.6, which has no hardcoded limit on the size of integers. I don't know if, in 2.7, casting B as an int would cause overflow, but decimal is incredibly useful regardless.

Why are Float and Double different in the case of adding 0.1 and 0.2?

Can someone explain why
(0.1::Float) + (0.2::Float) == (0.3::Float)
while
(0.1::Double) + (0.2::Double) /= (0.3::Double)
To my knowledge Double is supposed to be more precise. Is there something about Float I should know about?
The first thing to realize is that when you enter 0.1::Double and ghci prints 0.1 back, it's only an "illusion:"
Prelude Data.Ratio> 0.1::Double
0.1
Why is that an illusion? Because the number 0.1 is actually not precisely representable as a floating point number! This is true for both Float and Double. Observe:
Prelude Data.Ratio> toRational (0.1::Float)
13421773 % 134217728
Prelude Data.Ratio> toRational (0.1::Double)
3602879701896397 % 36028797018963968
So, in reality, these numbers are indeed "close" to the actual real number 0.1, but neither is precisely 0.1. How close are they? Let's find out:
Prelude Data.Ratio> toRational (0.1::Float) - (1%10)
1 % 671088640
Prelude Data.Ratio> toRational (0.1::Double) - (1%10)
1 % 180143985094819840
As you see, Double is indeed a lot more precise than Float; the difference between the representation of 0.1 as a Double and the actual real-number 0.1 is a lot smaller. But neither is precise.
So, indeed the Double addition is a lot more precise, and should be preferred over the Float version. The confusing equality you see is nothing but the weird effect of rounding. The results of == should not be trusted in the floating-point land. In fact, there are many floating point numbers x such that x == x + 1 holds. Here's one example:
Prelude> let x = -2.1474836e9::Float
Prelude> x == x + 1
True
A good read on floating-point representation is the classic What Every Computer Scientist Should Know about Floating-Point Arithmetic, which explains many of these quirky aspects of floating-point arithmetic.
Also note that this behavior is not unique to Haskell. Any language that uses IEEE754 Floating-point arithmetic will behave this way, which is the standard implemented by modern microprocessors.
Double is indeed more precise. And yes, there is something you should know about floating point representations in general: you have to be very careful about how you use them! == is generally unlikely to actually be useful. You're generally going to want to compare floating point representations using more specialized functions, or at least check if the representation lies within some range rather than whether it has a certain value according to the built-in approximation.

While computing proper fraction in Haskell

I want to code a function makeFraction :: Float -> Float -> (Int, Int) which returns (x,y) whenever I say makeFraction a b such that x/y is a proper fraction equivalent to a / b. For eg, makeFraction 17.69 5.51 should return (61,19).
I have a subroutine to calculate gcd of two numbers but my first task is to convert a and b to Int e.g. 17.69 and 5.51 should be converted into 1769 and 551.
Now I want to do it for numbers with arbitrary decimal places. Prelude function does not help me much. For instance, when I say toFraction(0.2); it returns 3602879701896397 % 18014398509481984 which would severely strain the correctness of my later computations.
Later I tried getting fractional values by using another library function properFraction(17.69) which suppose to give me only 0.69 but it produces 0.69000...013 which is not I would accept in a proper state of mind.
It does look like a problem arising from Floating point arithmatic. Till now I am not doing any data manipulation but only asking for the part of stored bits which I should be able to fetch from processor registers/memory location. Is there any special function library in Haskell to do such tasks?
PS: Seems like some useful tips are here How to parse a decimal fraction into Rational in Haskell? . But since I have typed so much, I would like to post it. At least the context is different here.
Yes, it is the limited precision of floating-point arithmetic you're encountering. The floating-point format cannot represent 0.2 exactly, so toFraction is actually giving you the exact rational value of the Float number you get when you ask for 0.2.
Similarly, 17.69 cannot be represented exactly, and because the point floats, its best representation has a larger absolute error than the error in the representation of 0.69. Thus, when you take away the integer part, the resulting bits are not the same as if you had asked to represent 0.69 as good as possible from the beginning, and this difference can be seen when the implementation prints out the result in decimal form.
It seems to me that instead of using a floating-point type like Float or Double, you should do all your computations using a type that can represent those numbers exactly, like Rational. For example,
(17.69 :: Rational) / (5.51 :: Rational)
evaluates to 61 % 19
As mentioned in the other answers, a Float cannot necessarily represent a given decimal number exactly. In particular, a Float is stored internally using the form a/(2^m). As a result, real numbers like 3/10 can only ever be approximated by floating point numbers.
But if a decent approximation is all you need, this might help:
import Data.Ratio
convertFloat :: Float -> Rational
convertFloat f = let
denom = 10^6
num = fromInteger denom * f
in round num % denom
For example:
> convertFloat 17.69
1769 % 100
> convertFloat 17.69 / convertFloat 5.51
61 % 19
Check out base's Numeric module, especially the floatToDigits function.
> floatToDigits 10 17.69
([1,7,6,9],2)

Haskell equation solving in the real numbers

I've just started playing with GHCi. I see that list generators basically solve an equation within a given set:
Prelude> [x | x <- [1..20], x^2 == 4]
[2]
(finds only one root, as expected)
Now, why can't I solve equations with results in ℝ, given that the solution is included in the specified range?
[x | x <- [0.1,0.2..2.0], x*4 == 2]
How can I solve such equations within real numbers set?
Edit: Sorry, I meant 0.1, of course.
List comprehension doesn't solve equations, it just generates a list of items that belong to certain sets. If your set is defined as any x in [1..20] such that x^2==4, that's what you get.
You cannot do that with a complete list of any real number from 0.01 to 2.0, because such real list cannot be represented in haskell (or better: it cannot be represented on any computer), since it has infinite numbers with infinite precision.
[0.01,0.2..2.0] is a list made of the following numbers:
Prelude> [0.01,0.2..2.0]
[1.0e-2,0.2,0.39,0.5800000000000001,0.7700000000000001,0.9600000000000002,1.1500000000000004,1.3400000000000005,1.5300000000000007,1.7200000000000009,1.910000000000001]
And none of these numbers satisfies your condution.
Note that you probably meant [0.1,0.2..2.0] instead of [0.01,0.2..2.0]. Still:
Prelude> [0.1,0.2..2.0]
[0.1,0.2,0.30000000000000004,0.4000000000000001,0.5000000000000001,0.6000000000000001,0.7000000000000001,0.8,0.9,1.0,1.1,1.2000000000000002,1.3000000000000003,1.4000000000000004,1.5000000000000004,1.6000000000000005,1.7000000000000006,1.8000000000000007,1.9000000000000008,2.000000000000001]
As others have mentioned, this is not an efficient way to solve equations, but it can be done with ratios.
Prelude> :m +Data.Ratio
Prelude Data.Ratio> [x|x<-[1%10, 2%10..2], x*4 == 2]
[1 % 2]
Read x % y as x divided by y.
The floating point issue can be solved in this way:
Prelude> [x | x <- [0.1, 0.2 .. 2.0], abs(2 - x*4) < 1e-9]
[0.5000000000000001]
For a reference why floating point numbers can make problems see this: Comparing floating point numbers
First of all [0.01,0.2..2.0] wouldn't include 0.5 even if floating point arithmetic were accurate. I assume you meant the first element to be 0.1.
The list [0.1,0.2..2.0] does not contain 0.5 because floating point arithmetic is imprecise and the 5th element of [0.1,0.2..2.0] is 0.5000000000000001, not 0.5.

problem with Double and Rational Number

I am writing a function in which I need to read a string contains floating point number and turn it back to Rational. But When I do toRational (read input :: Double), it will not turn for eg: 0.9 into 9 % 10 as expected, but instead 81..... % 9007...
Thx
This is correct behavior. The number 0.9 is not representable as a Double, not in Haskell, C, or Java. This is because Double and Float use base 2: they can only represent a certain subset of the dyadic fractions exactly.
To get the behavior you want, import the Numeric module and use the readFloat function. The interface is fairly wonky (it uses the ReadS type), so you'll have to wrap it a little. Here's how you can use it:
import Numeric
myReadFloat :: String -> Rational -- type signature is necessary here
myReadFloat str =
case readFloat str of
((n, []):_) -> n
_ -> error "Invalid number"
And, the result:
> myReadFloat "0.9"
9 % 10
Binary floating point numbers cannot precisely represent all the numbers that base-10 can. The number you see as 0.9 is not precisely 0.9 but something very close to it. Never use floating-point types where decimal precision is needed — they just can't do it.

Resources