converting list of type Integer to list of type Int - haskell

i'm trying to convert this list [1..20] from [Integer] to [Int]
map fromInteger [1..20]
however this still gives me a list of Integers
This on its own converts 2 which is Integer type to Int
fromInteger 2 :: Int
What's wrong

In Haskell, values can – just like functions – be polymorphic.
This idea is familiar to most programmers for the numerical operators: nobody finds it strange that 5 + 6 works, yielding and integer, just as fine as 3.14159 + 2.71828 works yielding a float. But in languages like C this is done pretty much ad-hoc, just because this special case is so handy. This brings a lot of problems with it, in particular when you write things like 1/12, which will carry out the / as integer-division, resulting in 0. Clearly not the intended thing when ou use it in something like
for (double hourWay = 0; hourWay<1; hourWay += 1/12)
double theta = hourWay * 2 * pi;
...
So programmers have to resort to ugly hacks like writing out the fraction in decimal, or explicitly making one of the numbers float (1.0 / 12.0, urgh!).
Haskell does this automatically for us: when it sees the result will be a double (that's explicitly written out in hourWays declaration) it makes no sense to start that calculation with integers, so it interprets 1 and 12 as floating-point right away. No problem with that since the integers certainly form a subset of the reals1. You can directly access this functionality by giving explicit type signatures:
Prelude> 4 :: Int
4
Prelude> 4 :: Double
4.0
Note that :: Double does not convert the number. 4 by itself does not have any particular type at all, it's polymorphic: whatever number type you want, 4 is a valid description; this is expressed in the type system by the signature
Prelude> :t 4
4 :: Num a => a
And in particular, this means
Prelude> :t [1..20]
[1..20] :: (Num t, Enum t) => [t]
is also polymorphic, which allows you to write
Prelude> [1..20] :: [Int]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
Prelude> [1..20] :: [Double]
[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0]
Only when you don't give any signature, ghci will default to the "safest bet", which is Integer.
So in the case of [1..20] you don't need fromInteger at all. You would need it though if some elements weren't given directly as literals, but external constants / arguments of fixed type Integer.
Prelude> let x = 13 :: Integer
Prelude> :t [1..12]++[x]++[14..20]
[1..12]++[x]++[14..20] :: [Integer]
Prelude> map fromInteger ([1..12]++[x]++[14..20]) :: [Int]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
This works again with any numerical result type you request, because although x prevents [1..12]++[x]++[14..20] from being polymorphic, fromInteger re-introduces that.
Prelude> :t map fromInteger ([1..12]++[x]++[14..20]) :: [Int]
map fromInteger ([1..12]++[x]++[14..20]) :: Num b => [b]
1Which doesn't actually mean Double forms a subtype of Integer or even Int... it doesn't; but this becomes a problem only for big numbers.

Related

fromInteger is a cast?

I'm looking at this, as well as contemplating the whole issue of non-decimal literals, e.g., 1, being just sugar for fromInteger 1 and then I find the type is
λ> :t 1
1 :: Num p => p
This and the statement
An integer literal represents the application of the function
fromInteger to the appropriate value of type Integer.
have me wondering what is really going on. Likewise,
λ> :t 3.149
3.149 :: Fractional p => p
Richard Bird says
A floating-point literal such as 3.149 represents the application of
fromRational to an appropriate rational number. Thus 3.149 :: Fractional a => a
Not understanding what the application of fromRational to an appropriate rational number means. Then he says this is all necessary to be able to add, e.g., 42 + 3.149.
I feel there's a lot going on here that I just don't understand. Like there's too much hand-waving for me. It seems like a cast of an unidentified non-decimal or decimal to specific types, Integer and Rational. So first, why is 1 actually fromInteger 1 internally? I realize every expression must be evaluated as a type, but why is fromInteger and fromRational involved?
Auxillary
So at this page
The workhorse for converting from integral types is fromIntegral,
which will convert from any Integral type into any Numeric type (which
includes Int, Integer, Rational, and Double): fromIntegral :: (Num b, Integral a) => a -> b
Then comes the example
λ> sqrt 1
1.0
λ> sqrt (1 :: Int)
... error...
λ> sqrt (fromInteger 1)
1.0
λ> :t sqrt 1
sqrt 1 :: Floating a => a
λ> :t sqrt (1 :: Int)
...error...
λ> :t sqrt
sqrt :: Floating a => a -> a
λ> :t sqrt (fromInteger 1)
sqrt (fromInteger 1) :: Floating a => a
So yes, this is a cast, but I don't know the mechanism of how fromI* is doing this --- since technically it's not a cast in a C/C++ sense. All instances of Num must have a fromInteger. It seems like under the hood Haskell is taking whatever you put in and generic-izing it to Integer or Rational, then "giving it back" to the original function, e.g., with sqrt (fromInteger 1) being of type Floating a => a. This is very mysterious to someone prone to over-thinking.
So yes, 1 is a literal, a constant that is polymorphic. It may represent 1 in any type that instantiates Num. The role of fromInteger must be to allowing a value (a cast) to be extracted from an integer constant consistent with what the situation calls for. But this is hand-waving talk at some point. I dont' get how this is actually happening.
Perhaps this will help...
Imagine a language, like Haskell, except that the literal program text 1 represents a term of type Integer with value one, and the literal program text 3.14 represents a term of type Rational with value 3.14. Let's call this language "AnnoyingHaskell".
To be clear, when I say "represents" in the above paragraph, I mean that the AnnoyingHaskell compiler actually compiles those literals into machine code that produces an Integer term whose value is the number 1 in the first case, and a Rational term whose value is the number 3.14 in the second case. An Integer is -- at it's core -- an arbitrary precision integer as implemented by the GMP library, while a Rational is a pair of two Integers, understood to be the numerator and denominator of a rational number. For this particular rational, the two integers would be 157 and 50 (i.e., 157/50=3.14).
AnnoyingHaskell would be... erm... annoying to use. For example, the following expression would not type check:
take 3 "hello"
because 3 is an Integer but take's first argument is an Int. Similarly, the expression:
42 + 3.149
would not type check, because 42 is an Integer and 3.149 is a Rational, and in AnnoyingHaskell, as in Haskell itself, you cannot add an Integer and a Rational.
Because this is annoying, the designers of Haskell made the decision that the literal program text 42 and 3.149 should be treated as if they were the AnnoyingHaskell expressions fromInteger 42 and fromRational 3.149.
The AnnoyingHaskell expression:
fromInteger 42 + fromRational 3.149
does type check. Specifically, the polymorphic function:
fromInteger :: (Num a) => Integer -> a
accepts the AnnoyingHaskell literal 42 :: Integer as its argument, and the resulting subexpression fromInteger 42 has resulting type Num a => a for some fresh type a. Similarly, fromRational 3.149 is of type Fractional b => b for some fresh type b. The + operator unifies these two types into a single type (Num c, Fractional c) => c, but Num c is redundant because Num is a superclass of Fractional, so the whole expression has a polymorphic type:
fromInteger 42 + fromRational 3.149 :: Fractional c => c
That is, this expression can be instantiated at any type with a Fractional constraint. For example. In the Haskell program:
main = print $ 42 + 3.149
which is equivalent to the AnnoyingHaskell program:
main = print $ fromInteger 42 + fromRational 3.149
the usual "defaulting" rules apply, and because the expression passed to the print statement is an unknown type c with a Fractional c constraint, it is defaulted to Double, allowing the program to actually run, computing and printing the desired Double.
If the compiler was awful, this program would run by creating a 42 :: Integer on the heap, calling fromInteger (specialized to fromInteger :: Integer -> Double) to create a 42 :: Double, then create 3.149 :: Rational on the heap, calling fromRational (specialized to fromRational :: Rational -> Double) to create a 3.149 :: Double, and then add them together to create the final answer 45.149 :: Double. Because the compiler isn't so awful, it just creates the number 45.149 :: Double directly.
Perhaps this will help more. One thing you seem to be struggling with is the nature of a value of type Num a => a, like the one produced by fromInteger (1 :: Integer). I think you're somehow imagining that fromInteger "packages" up the 1 :: Integer in a box so it can later be cast by special compiler magic to a 1 :: Int or 1 :: Double.
That's not what's happening.
Consider the following type class:
{-# LANGUAGE FlexibleInstances #-}
class Thing a where
thing :: a
with associated instances:
instance Thing Bool where thing = True
instance Thing Int where thing = 16
instance Thing String where thing = "hello, world"
instance Thing (Int -> String) where thing n = replicate n '*'
and observe the result of running:
main = do
print (thing :: Bool)
print (thing :: Int)
print (thing :: String)
print $ (thing :: Int -> String) 15
Hopefully, you're comfortable enough with type classes that you don't find the output surprising. And presumably you don't think that thing contains some specific, identifiable "thing" that is being "cast" to a Bool, Int, etc. It's simply that thing is a polymorphic value whose definition depends on its type; that's just how type classes work.
Now, consider the similar example:
{-# LANGUAGE FlexibleInstances #-}
import Data.Ratio
import Data.Word
import Unsafe.Coerce
class Three a where
three :: a
-- for base >= 4.10.0.0, can import GHC.Float (castWord64ToDouble)
-- more generally, we can use this unsafe coercion:
castWord64ToDouble :: Word64 -> Double
castWord64ToDouble w = unsafeCoerce w
instance Three Int where
three = length "aaa"
instance Three Double where
three = castWord64ToDouble 0x4008000000000000
instance Three Rational where
three = (6 :: Integer) % (2 :: Integer)
main = do
print (three :: Int)
print (three :: Double)
print (three :: Rational)
print $ take three "abcdef"
print $ (sqrt three :: Double)
Can you see here how three :: Three a => a represents a value that can be used as an Int, Double, or Rational? If you want to think of it as a cast, that's fine, but obviously there's no identifiable single "3" that's packaged up in the value three being cast to different types by compiler magic. It's just that a different definition of three is invoked, depending on the type demanded by the caller.
From here, it's not a big leap to:
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MagicHash #-}
import Data.Ratio
import Data.Word
import Unsafe.Coerce
class MyFromInteger a where
myFromInteger :: Integer -> a
instance MyFromInteger Integer where
myFromInteger x = x
instance MyFromInteger Int where
-- for base >= 4.10.0.0 can use the following:
-- -- Note: data Integer = IS Int | ...
-- myFromInteger (IS i) = I# i
-- myFromInteger _ = error "not supported"
-- to support more GHC versions, we'll just use this extremely
-- dangerous coercion:
myFromInteger i = unsafeCoerce i
instance MyFromInteger Rational where
myFromInteger x = x % (1 :: Integer)
main = do
print (myFromInteger 1 :: Integer)
print (myFromInteger 2 :: Int)
print (myFromInteger 3 :: Rational)
print $ take (myFromInteger 4) "abcdef"
Conceptually, the base library's fromInteger (1 :: Integer) :: Num a => a is no different than this code's myFromInteger (1 :: Integer) :: MyFromInteger a => a, except that the implementations are better and more types have instances.
See, it's not that the expression fromInteger (1 :: Integer) boxes up a 1 :: Integer into a package of type Num a => a for later casting. It's that the type context for this expression causes dispatch to an appropriate Num type class instance, and a different definition of fromInteger is invoked, depending on the required type. That fromInteger function is always called with argument 1 :: Integer, but the returned type depends on the context, and the code invoked by the fromInteger call (i.e., the definition of fromInteger used) to convert or "cast" the argument 1 :: Integer to a "one" value of the desired type depends on which return type is demanded.
And, to go a step further, as long as we take care of a technical detail by turning off the monomorphism restriction, we can write:
{-# LANGUAGE NoMonomorphismRestriction #-}
main = do
let two = myFromInteger 2
print (two :: Integer)
print (two :: Int)
print (two :: Rational)
This may look strange, but just as myFromInteger 2 is an expression of type Num a => a whose final value is produced using a definition of myFromInteger, depending on what type is ultimately demanded, the expression two is also an expression of type Num a => a whose final value is produced using a definition of myFromInteger that depends on what type is ultimately demanded, even though the literal program text myFromInteger does not appear in the expression two. Moreover, continuing with:
let four = two + two
print (four :: Integer)
print (four :: Int)
print (four :: Rational)
the expression four of type Num a => a will produce a final value that depends on the definition of myFromInteger and the definition of (+) that are determined by the finally demanded return type.
In other words, rather than thinking of four as a packaged 4 :: Integer that's going to be cast to various types, you need to think of four as completely equivalent to its full definition:
four = myFromInteger 2 + myFromInteger 2
with a final value that will be determined by using the definitions of myFromInteger and (+) that are appropriate for whatever type is demanded of four, whether its four :: Integer or four :: Rational.
The same goes for sqrt (fromIntegral 1) After:
x = sqrt (fromIntegral (1 :: Integer))
the value of x :: Floating a => a is equivalent to the full expression:
sqrt (fromIntegral (1 :: Integer))
and every place it is is used, it will be calculated using definitions of sqrt and fromIntegral determined by the Floating and Num instances for the final type demanded.
Here's all the code in one file, testing with GHC 8.2.2 and 9.2.4.
{-# LANGUAGE Haskell98 #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
import Data.Ratio
import GHC.Num
import GHC.Int
import GHC.Float (castWord64ToDouble)
class Thing a where
thing :: a
instance Thing Bool where thing = True
instance Thing Int where thing = 16
instance Thing String where thing = "hello, world"
instance Thing (Int -> String) where thing n = replicate n '*'
class Three a where
three :: a
instance Three Int where
three = length "aaa"
instance Three Double where
three = castWord64ToDouble 0x4008000000000000
instance Three Rational where
three = (6 :: Integer) % (2 :: Integer)
class MyFromInteger a where
myFromInteger :: Integer -> a
instance MyFromInteger Integer where
myFromInteger x = x
instance MyFromInteger Int where
-- Note: data Integer = IS Int | ...
myFromInteger (IS i) = I# i
myFromInteger _ = error "not supported"
instance MyFromInteger Rational where
myFromInteger x = x % (1 :: Integer)
main = do
print (thing :: Bool)
print (thing :: Int)
print (thing :: String)
print $ (thing :: Int -> String) 15
print (three :: Int)
print (three :: Double)
print (three :: Rational)
print $ take three "abcdef"
print $ (sqrt three :: Double)
print (myFromInteger 1 :: Integer)
print (myFromInteger 2 :: Int)
print (myFromInteger 3 :: Rational)
print $ take (myFromInteger 4) "abcdef"
let two = myFromInteger 2
print (two :: Integer)
print (two :: Int)
print (two :: Rational)
let four = two + two
print (four :: Integer)
print (four :: Int)
print (four :: Rational)

Why does "take" change datatype in haskell?

I'm writing a function which takes elements from a list and returns them.
Pretty simple I thought. But when using "take" in for example: take 2 [1.2,3,4]
it returns: [1.2,3.0] when I actually want [1.2, 3]
I thought for creating a function that goes through the list and cuts unnecessary decimals but I can't get my head around it seeing haskell doesn't accept my comparison with x & round(x) in
function :: [a] -> [a]
function(x:xs)
if x == round(x) = round(x):function xs
else x:function xs
So A: Are there any simpler solutions?
B: Why can't haskell compare x with round(x)?
You say, "I actually want [1.2, 3] [and not [1.2, 3.0]]". I interpret this to mean that you want a list that contains Floats or the like for fractional numbers and Ints or the like for numbers without a fraction part.
You can't have this.
All lists in Haskell are homogeneous: every element has the same type.
There are some things you can do; for example, you can have tagged unions, the canonical example being Either. So
[Left 1.2, Right 3] :: [Either Double Integer]
would be fine; but you need to explicitly tag each element.
This is also more or less the answer to why x == round x doesn't work: the (==) operator takes two arguments of the same type; whereas typically round cannot return a value of the same type as its argument. You might like properFraction instead:
> properFraction 3
(3,0.0)
> properFraction 1.2
(1,0.19999999999999996)
You can check the second part of this to determine whether your number is a whole number or not (and when it is, the first part will be the result of round).
take does not change the type of list elements. Start up GHCi and follow along. My prompt is >>>.
>>> :t [1.2,3,4]
[1.2,3,4] :: Fractional t => [t]
This says the list elements have some Fractional type.
>>> :t [1.2,3.0,4.0]
[1.2,3.0,4.0] :: Fractional t => [t]
GHCi says the same thing here as well. What is going on?
>>> :t 2
2 :: Num t => t
>>> :t 2.0
2.0 :: Fractional t => t
A number literal without a decimal is inferred to have some Num type. A number literal with a decimal is inferred to have some Fractional type. For two elements to be in the same list, they must have the same type. What is the common type for 2 and 2.0?
>>> :t 2 `asTypeOf` 2.0
2 `asTypeOf` 2.0 :: Fractional a => a
All Fractional types are Num types, and so the common type for 2 and 2.0 is some Fractional type.
>>> [1.2,3,4]
[1.2,3.0,4.0]
We can see from the printing of the list that all the elements have been inferred as a Fractional type. This defaults to Double.
To remove unnecessary decimals from a list you will have to be more specific about what type you want this list to have. A list of Int has no decimals and a list of Double always has decimals. A single list cannot have both Int and Double typed elements.

How to follow type inferences in Haskell?

Couldn't really follow the type inferences below, where case 1 worked but case 2 failed, why?
ghci> :t sqrt . maximum . map (+1) -- case 1
(Floating c, Ord c) => [c] -> c
ghci> :t sqrt . maximum . map length -- case 2
Could not deduce (Floating Int) arising from a use of ‘sqrt’
from the context (Foldable t)
bound by the inferred type of it :: Foldable t => [t a] -> Int
#EDIT
On OOP , Num is ususally the lower bound for all its subtypes e.g. Int and Float. Hence, Int will be inferentially acceptable if Num is the qualified type, but not vice versa.
Besides, on C-like languages, the built-in number conversion can automatically fulfill the case from the lower precision to the higher e.g. from Int to Float.
In contrast, on Haskell with HM type system, Num is the class for all its instances e.g. Int and the subclasses e.g. Floating. The qualified types can be bi-inferred between the ancestor and the descendant e.g. from Num to Int, Floating or vice versa, but not between Int and Floating.
To remedy case 2, Int should firstly be adapted to Num by fromIntegral or exerting Data.List.genericLength to produce the Num - the inferentially qualified type for Floating that sqrtrequires.
Let's apply the aforementioned points to follow the type inferences below,
ghci> :t (+)
Num a => a -> a -> a
ghci> :t 1.1
Fractional a => a
ghci> :i Fractional
class Num a => Fractional a
instance Fractional Float
instance Fractional Double
ghci> :t 1
Num a => a
ghci> :t length [1]
Int
ghci> :i Int
instance Num Int
instance Real Int
instance Integral Int
ghci> :t 1.1 + 1 -- case 1
Fractional a => a
ghci> :t 1.1 + length [1] -- case 2
No instance for (Fractional Int) arising from the literal ‘1.1’
1 can be any type of number and + can work with any type of number. The same is true for maximum. Thus maximum . map (+1) is a function that can can take a list of any type of number and produce a number of the same type as its result. This includes both integral numbers and floating point numbers.
However length will specifically produce an Int. It can not produce any other type of number. So maximum . map length can take any list and produce a result of type Int, not of any other numeric type.
Now sqrt needs its argument to be a floating point number. So in the first case type inference figures out that you must provide a list of floating point numbers, so the result of maximum . map (+1) will be a floating point number that can be passed to sqrt.
However the second case simply can not work because Int is not a floating point type and maximum . map length can't produce anything other than an Int. So this causes an error.
You can use the fromIntegral function to convert the result of length to any numeric type to make the second code work.

why is this snippet valid with an explicit value, but invalid as a function?

I'm trying to work a problem where I need to calculate the "small" divisors of an integer. I'm just bruteforcing through all numbers up to the square root of the given number, so to get the divisors of 10 I'd write:
[k|k<-[1...floor(sqrt 10)],rem 10 k<1]
This seems to work well. But as soon as I plug this in a function
f n=[k|k<-[1...floor(sqrt n)],rem n k<1]
And actually call this function, I do get an error
f 10
No instance for (Floating t0) arising from a use of `it'
The type variable `t0' is ambiguous
Note: there are several potential instances:
instance Floating Double -- Defined in `GHC.Float'
instance Floating Float -- Defined in `GHC.Float'
In the first argument of `print', namely `it'
In a stmt of an interactive GHCi command: print it
As far as I undrestand the actual print function that prints the result to the console is causing trouble, but I cannot find out what is wrong. It says the type is ambiguous, but the function can clearly only return a list of integers. Then again I checked the type, and it the (inferred) type of f is
f :: (Floating t, Integral t, RealFrac t) => t -> [t]
I can understand that fshould be able to accept any real numerical value, but can anyone explain why the return type should be anything else than Integral or int?
[k|k<-[1...floor(sqrt 10)],rem 10 k<1]
this works because the first 10 is not the same as the latter one - to see this, we need the type signature of your functions:
sqrt :: Floating a => a -> a
rem :: Integral a => a -> a -> a
so the first one means that it works for stuff that have a floating point representation - a.k.a. Float, Double ..., and the second one works for Int, Integer (bigint), Word8 (unsigned 8bit integers)...
so for the 10 in sqrt 10 the compiler says - ahh this is a floating point number, null problemo, and for the 10 in rem 10 k, ahh this is an integer like number, null problemo as well.
But when you bundle them up in a function - you are saying n has to be a floating point and an integral number, the compiler knows no such thing and - complains.
So what do we do to fix that (and a side note ranges in haskell are indicated by .. not ...!). So let us start by taking a concrete solution and generalize it.
f :: Int -> [Int]
f n = [k|k <- [1..n'],rem n k < 1]
where n' = floor $ sqrt $ fromIntegral n
the neccessary part was converting the Int to a floating point number. But if you are putting that in a library all your users need to stick with using Int which is okay, but far from ideal - so how do we generalize (as promised)? We use GHCi to do that for us, using a lazy language we ourselves tend to be lazy as well.
We start by commenting out the type-signature
-- f :: Int -> [Int]
f n = [k|k <- [1..n'],rem n k < 1]
where n' = floor $ sqrt $ fromIntegral n
$> ghci MyLib.hs
....
MyLib > :type f
f :: Integral a => a -> [a]
then we can take this and put it into the library and if someone worked with Word8 or Integer that would work as well.
Another solution would be to use rem (floor n) k < 1 and have
f :: Floating a, Integral b => a -> [b]
as the type, but that would be kind of awkward.

Haskell Type Coercion

I trying to wrap my head around Haskell type coercion. Meaning, when does can one pass a value into a function without casting and how that works. Here is a specific example, but I am looking for a more general explanation I can use going forward to try and understand what is going on:
Prelude> 3 * 20 / 4
15.0
Prelude> let c = 20
Prelude> :t c
c :: Integer
Prelude> 3 * c / 4
<interactive>:94:7:
No instance for (Fractional Integer)
arising from a use of `/'
Possible fix: add an instance declaration for (Fractional Integer)
In the expression: 3 * c / 4
In an equation for `it': it = 3 * c / 4
The type of (/) is Fractional a => a -> a -> a. So, I'm guessing that when I do "3 * 20" using literals, Haskell somehow assumes that the result of that expression is a Fractional. However, when a variable is used, it's type is predefined to be Integer based on the assignment.
My first question is how to fix this. Do I need to cast the expression or convert it somehow?
My second question is that this seems really weird to me that you can't do basic math without having to worry so much about int/float types. I mean there's an obvious way to convert automatically between these, why am I forced to think about this and deal with it? Am I doing something wrong to begin with?
I am basically looking for a way to easily write simple arithmetic expressions without having to worry about the neaty greaty details and keeping the code nice and clean. In most top-level languages the compiler works for me -- not the other way around.
If you just want the solution, look at the end.
You nearly answered your own question already. Literals in Haskell are overloaded:
Prelude> :t 3
3 :: Num a => a
Since (*) also has a Num constraint
Prelude> :t (*)
(*) :: Num a => a -> a -> a
this extends to the product:
Prelude> :t 3 * 20
3 * 20 :: Num a => a
So, depending on context, this can be specialized to be of type Int, Integer, Float, Double, Rational and more, as needed. In particular, as Fractional is a subclass of Num, it can be used without problems in a division, but then the constraint will become
stronger and be for class Fractional:
Prelude> :t 3 * 20 / 4
3 * 20 / 4 :: Fractional a => a
The big difference is the identifier c is an Integer. The reason why a simple let-binding in GHCi prompt isn't assigned an overloaded type is the dreaded monomorphism restriction. In short: if you define a value that doesn't have any explicit arguments,
then it cannot have overloaded type unless you provide an explicit type signature.
Numeric types are then defaulted to Integer.
Once c is an Integer, the result of the multiplication is Integer, too:
Prelude> :t 3 * c
3 * c :: Integer
And Integer is not in the Fractional class.
There are two solutions to this problem.
Make sure your identifiers have overloaded type, too. In this case, it would
be as simple as saying
Prelude> let c :: Num a => a; c = 20
Prelude> :t c
c :: Num a => a
Use fromIntegral to cast an integral value to an arbitrary numeric value:
Prelude> :t fromIntegral
fromIntegral :: (Integral a, Num b) => a -> b
Prelude> let c = 20
Prelude> :t c
c :: Integer
Prelude> :t fromIntegral c
fromIntegral c :: Num b => b
Prelude> 3 * fromIntegral c / 4
15.0
Haskell will never automatically convert one type into another when you pass it to a function. Either it's compatible with the expected type already, in which case no coercion is necessary, or the program fails to compile.
If you write a whole program and compile it, things generally "just work" without you having to think too much about int/float types; so long as you're consistent (i.e. you don't try to treat something as an Int in one place and a Float in another) the constraints just flow through the program and figure out the types for you.
For example, if I put this in a source file and compile it:
main = do
let c = 20
let it = 3 * c / 4
print it
Then everything's fine, and running the program prints 15.0. You can see from the .0 that GHC successfully figured out that c must be some kind of fractional number, and made everything work, without me having to give any explicit type signatures.
c can't be an integer because the / operator is for mathematical division, which isn't defined on integers. The operation of integer division is represented by the div function (usable in operator fashion as x `div` y). I think this might be what is tripping you up in your whole program? This is unfortunately just one of those things you have to learn by getting tripped up by it, if you're used to the situation in many other languages where / is sometimes mathematical division and sometimes integer division.
It's when you're playing around in the interpreter that things get messy, because there you tend to bind values with no context whatsoever. In interpreter GHCi has to execute let c = 20 on its own, because you haven't entered 3 * c / 4 yet. It has no way of knowing whether you intend that 20 to be an Int, Integer, Float, Double, Rational, etc
Haskell will pick a default type for numeric values; otherwise if you never use any functions that only work on one particular type of number you'd always get an error about ambiguous type variables. This normally works fine, because these default rules are applied while reading the whole module and so take into account all the other constraints on the type (like whether you've ever used it with /). But here there are no other constraints it can see, so the type defaulting picks the first cab off the rank and makes c an Integer.
Then, when you ask GHCi to evaluate 3 * c / 4, it's too late. c is an Integer, so must 3 * c be, and Integers don't support /.
So in the interpreter, yes, sometimes if you don't give an explicit type to a let binding GHC will pick an incorrect type, especially with numeric types. After that, you're stuck with whatever operations are supported by the concrete type GHCi picked, but when you get this kind of error you can always rebind the variable; e.g. let c = 20.0.
However I suspect in your real program the problem is simply that the operation you wanted was actually div rather than /.
Haskell is a bit unusual in this way. Yes you can't divide to integers together but it's rarely a problem.
The reason is that if you look at the Num typeclass, there's a function fromIntegral this allows you to convert literals into the appropriate type. This with type inference alleviates 99% of the cases where it'd be a problem. Quick example:
newtype Foo = Foo Integer
deriving (Show, Eq)
instance Num Foo where
fromInteger _ = Foo 0
negate = undefined
abs = undefined
(+) = undefined
(-) = undefined
(*) = undefined
signum = undefined
Now if we load this into GHCi
*> 0 :: Foo
Foo 0
*> 1 :: Foo
Foo 0
So you see we are able to do some pretty cool things with how GHCi parses a raw integer. This has a lot of practical uses in DSL's that we won't talk about here.
Next question was how to get from a Double to an Integer or vice versa. There's a function for that.
In the case of going from an Integer to a Double, we'd use fromInteger as well. Why?
Well the type signature for it is
(Num a) => Integer -> a
and since we can use (+) with Doubles we know they're a Num instance. And from there it's easy.
*> 0 :: Double
0.0
Last piece of the puzzle is Double -> Integer. Well a brief search on Hoogle shows
truncate
floor
round
-- etc ...
I'll leave that to you to search.
Type coercion in Haskell isn't automatic (or rather, it doesn't actually exist). When you write the literal 20 it's inferred to be of type Num a => a (conceptually anyway. I don't think it works quite like that) and will, depending on the context in which it is used (i.e. what functions you pass it to) be instantiated with an appropitiate type (I believe if no further constraints are applied, this will default to Integer when you need a concrete type at some point). If you need a different kind of Num, you need to convert the numbers e.g. (3* fromIntegral c / 4) in your example.
The type of (/) is Fractional a => a -> a -> a.
To divide Integers, use div instead of (/). Note that the type of div is
div :: Integral a => a -> a -> a
In most top-level languages the compiler works for me -- not the other way around.
I argue that the Haskell compiler works for you just as much, if not more so, than those of other languages you have used. Haskell is a very different language than the traditional imperative languages (such as C, C++, Java, etc.) you are probably used to. This means that the compiler works differently as well.
As others have stated, Haskell will never automatically coerce from one type to another. If you have an Integer which needs to be used as a Float, you need to do the conversion explicitly with fromInteger.

Resources