I want to get the selected item of users but it gives an error on this code:
choice->value();
hopes you kind guys can help me.
Fl_Choice* choice;
int i = 0;
void but_cb(Fl_Button* obj, void*)
{
i = choice->value();
cout<<i;
}
int main (int argc, char* argv[]) {
Fl_Double_Window* win = new Fl_Double_Window(400,400,"Sample");
win->begin();
Fl_Choice* choice = new Fl_Choice(100,100,100,100,"Name");
choice->add("Peter");
choice->add("Tom");
choice->add("Mary");
Fl_Button* but = new Fl_Button(300,300,50,50,"Selected");
but->callback((Fl_Callback*)but_cb);
win->show();
return (Fl::run());
}
I did not spend much time reading the code, so the modified, and commented code below may not be solution to your problem. I believe choice is NULL in but_cb() as you are redefining choice in your main() function, hiding the global 'choice' pointer.
Fl_Choice* choice;
int i = 0;
void but_cb(Fl_Button* obj, void*) {
i = choice->value(); // uses global `choice` pointer to Fl_Choice.
cout << i;
}
int main (int argc, char* argv[]) {
Fl_Double_Window* win = new Fl_Double_Window(400,400,"Sample");
win->begin();
/* You are redefining choice here! BAD, because but_cb uses the global one.
Fl_Choice* choice = new Fl_Choice(100,100,100,100,"Name");
*/
// Good, assigns to the global `choice`, so it won't be NULL when but_cb is called
choice = new Fl_Choice(100,100,100,100,"Name");
choice->add("Peter");
choice->add("Tom");
choice->add("Mary");
Fl_Button* but = new Fl_Button(300,300,50,50,"Selected");
but->callback((Fl_Callback*)but_cb);
win->show();
return (Fl::run());
}
Related
I am trying to construct a child class object from a base class object. I have tried the below code.
class A
{
public:
A();
A(A&& objectName) = default;
virtual void setint(int i);
virtual void getint();
int var;
};
class B: public A
{
public:
virtual void getint();
B(A&& objectName);
int j= 20;
};
A::A()
{
}
void A::setint(int i)
{
var = i;
}
void A::getint()
{
qDebug()<<"From A Var"<<var;
}
void B::getint()
{
qDebug()<<"From B j"<<j;
qDebug()<<"From B Var"<<var;
}
B::B(A&& objectName): A(std::move(objectName))
{
}
And in my Main.cpp I am doing this
#include <memory>
int main(int argc, char *argv[])
{
A *obj = new A();
obj->setint(10);
obj->getint();
A *obj1 = new B(std::move(*obj));
obj->getint();
obj1->getint();
return 0;
}
The result I get is
From A Var 10
From A Var 10
From B j 20
From B Var 10
My question is why am I getting the value of Var after A *obj1 = new B(std::move(*obj)); this line. I thought the object pointed by obj must have been destructed.
Let me copy paste from this answer: https://stackoverflow.com/a/15663912/512225
std::move doesn't move from the object. It just returns an rvalue reference whose referand is the object, making it possible to move from the object.
Anyway your code is terrible. I hope you know. If you don't, ask for a review.
void testfunc3(){
char* funcname[20];
int n = 0 ;
n = backtrace((void**)funcname,20);
char** p_need_free = (char**)backtrace_symbols((void**)funcname,n);
int i = 0;
for(i=0;i<n;i++){
printf("funcname is : %s\n",p_need_free[i]);
}
free(p_need_free);
}
void testfunc2(){
testfunc3();
}
void testfunc1(){
testfunc2();
}
/** in another file **/
int main(){
testfunc1();
return 0;
}
this project has 2 files , main() takes 1, other functions take
another, the latter file is compiled as a dynamic library.
I have a function that takes a callback, and used it to do work on 10 separate threads. However, it is often the case that not all of the work is needed. For example, if the desired result is obtained on the third thread, it should stop all work being done on of the remaining alive threads.
This answer here suggests that it is not possible unless you have the callback functions take an additional std::atomic_bool argument, that signals whether the function should terminate prematurely.
This solution does not work for me. The workers are spun up inside a base class, and the whole point of this base class is to abstract away details of multithreading. How can I do this? I am anticipating that I will have to ditch std::async for something more involved.
#include <iostream>
#include <future>
#include <vector>
class ABC{
public:
std::vector<std::future<int> > m_results;
ABC() {};
~ABC(){};
virtual int callback(int a) = 0;
void doStuffWithCallBack();
};
void ABC::doStuffWithCallBack(){
// start working
for(int i = 0; i < 10; ++i)
m_results.push_back(std::async(&ABC::callback, this, i));
// analyze results and cancel all threads when you get the 1
for(int j = 0; j < 10; ++j){
double foo = m_results[j].get();
if ( foo == 1){
break; // but threads continue running
}
}
std::cout << m_results[9].get() << " <- this shouldn't have ever been computed\n";
}
class Derived : public ABC {
public:
Derived() : ABC() {};
~Derived() {};
int callback(int a){
std::cout << a << "!\n";
if (a == 3)
return 1;
else
return 0;
};
};
int main(int argc, char **argv)
{
Derived myObj;
myObj.doStuffWithCallBack();
return 0;
}
I'll just say that this should probably not be a part of a 'normal' program, since it could leak resources and/or leave your program in an unstable state, but in the interest of science...
If you have control of the thread loop, and you don't mind using platform features, you could inject an exception into the thread. With posix you can use signals for this, on Windows you would have to use SetThreadContext(). Though the exception will generally unwind the stack and call destructors, your thread may be in a system call or other 'non-exception safe place' when the exception occurs.
Disclaimer: I only have Linux at the moment, so I did not test the Windows code.
#if defined(_WIN32)
# define ITS_WINDOWS
#else
# define ITS_POSIX
#endif
#if defined(ITS_POSIX)
#include <signal.h>
#endif
void throw_exception() throw(std::string())
{
throw std::string();
}
void init_exceptions()
{
volatile int i = 0;
if (i)
throw_exception();
}
bool abort_thread(std::thread &t)
{
#if defined(ITS_WINDOWS)
bool bSuccess = false;
HANDLE h = t.native_handle();
if (INVALID_HANDLE_VALUE == h)
return false;
if (INFINITE == SuspendThread(h))
return false;
CONTEXT ctx;
ctx.ContextFlags = CONTEXT_CONTROL;
if (GetThreadContext(h, &ctx))
{
#if defined( _WIN64 )
ctx.Rip = (DWORD)(DWORD_PTR)throw_exception;
#else
ctx.Eip = (DWORD)(DWORD_PTR)throw_exception;
#endif
bSuccess = SetThreadContext(h, &ctx) ? true : false;
}
ResumeThread(h);
return bSuccess;
#elif defined(ITS_POSIX)
pthread_kill(t.native_handle(), SIGUSR2);
#endif
return false;
}
#if defined(ITS_POSIX)
void worker_thread_sig(int sig)
{
if(SIGUSR2 == sig)
throw std::string();
}
#endif
void init_threads()
{
#if defined(ITS_POSIX)
struct sigaction sa;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
sa.sa_handler = worker_thread_sig;
sigaction(SIGUSR2, &sa, 0);
#endif
}
class tracker
{
public:
tracker() { printf("tracker()\n"); }
~tracker() { printf("~tracker()\n"); }
};
int main(int argc, char *argv[])
{
init_threads();
printf("main: starting thread...\n");
std::thread t([]()
{
try
{
tracker a;
init_exceptions();
printf("thread: started...\n");
std::this_thread::sleep_for(std::chrono::minutes(1000));
printf("thread: stopping...\n");
}
catch(std::string s)
{
printf("thread: exception caught...\n");
}
});
printf("main: sleeping...\n");
std::this_thread::sleep_for(std::chrono::seconds(2));
printf("main: aborting...\n");
abort_thread(t);
printf("main: joining...\n");
t.join();
printf("main: exiting...\n");
return 0;
}
Output:
main: starting thread...
main: sleeping...
tracker()
thread: started...
main: aborting...
main: joining...
~tracker()
thread: exception caught...
main: exiting...
I'm trying to transfer a command line code that I have to a more visual program with a
GUI to enable easier use. The original code was in C++, so I'm using Visual C++ that is
available in Visual Studio Express 2012, but I have problems understanding the "new"
managed C++/CLI way of handling objects. Being new to CLI and managed C++, I was wondering
if someone can explain what I am doing wrong, and why it doesn't work. Now here is a
description of the code and the problem.
The program is essentially an optimization program:
There are multiple boxes (modes) in a system, each mode, depending on its type has a
few numerical coefficients that control its behavior and the way it responds to outside
excitation.
The program asks the user to specify the number of boxes and the type of each box.
Then tries to find the numerical coefficients that minimize the difference between
the system response with those obtained experimentally.
So, the UI has means for user to open the experimental result files, specify the number
of modes, and specify the type of each mode. Then, the user can initiate the processing
function by clicking on a start button, that initiates a background worker.
Following the example given in MSDN, I created a class that performs the work:
ref class curveFit
{
public: ref class CurrentState{
public:
int percentage;
int iterationNo;
int stage;
bool done;
multimode systemModel;
};
public:
int modes;
int returncode;
array<double> ^expExcitations;
array<double> ^expResults;
multimode systemModel;
private:
void fcn(int, int, double*, double*, int*);
double totalError(std::vector<double> &);
public:
delegate void fcndelegate(int, int, double*, double*, int*);
public:
curveFit(void);
curveFit^ fit(System::ComponentModel::BackgroundWorker^, System::ComponentModel::DoWorkEventArgs^, Options^);
};
multimode is just a container class: a list of different boxes.
ref class multimode
{
private:
Collections::Generic::List<genericBoxModel ^>^ models;
int modes;
public:
multimode(void);
multimode(const multimode%);
int modeNo(void);
void Add(genericBoxModel^);
void Clear();
genericBoxModel^ operator[](int);
multimode% operator=(const multimode%);
double result(double);
bool isValid();
std::vector<double> MapData();
void MapData(std::vector<double> &);
};
multimode::multimode(void)
{
models = gcnew Collections::Generic::List<genericBoxModel ^>();
modes = 0;
}
multimode::multimode(const multimode% rhs)
{
models = gcnew Collections::Generic::List<genericBoxModel ^>();
for(int ind = 0; ind < rhs.modes; ind++)
models->Add(rhs.models[ind]);
modes = rhs.modes;
}
int multimode::modeNo(void)
{
return modes;
}
void multimode::Add(genericBoxModel^ model)
{
models->Add(model);
modes++;
}
void multimode::Clear()
{
models->Clear();
modes = 0;
}
genericBoxModel^ multimode::operator[](int ind)
{
return models[ind];
}
multimode% multimode::operator=(const multimode% rhs)
{
models->Clear();
for(int ind = 0; ind < rhs.modes; ind++)
models->Add(rhs.models[ind]);
modes = rhs.modes;
return *this;
}
double multimode::result(double excitation)
{
double temp = 0.0;
for(int ind = 0; ind < modes; ind++)
temp += models[ind]->result(excitation);
return temp;
}
bool multimode::isValid()
{
bool isvalid = true;
if(modes < 1)
return false;
for(int ind = 0; ind < modes; ind++)
isvalid = (isvalid && models[ind]->isValid());
return isvalid;
}
std::vector<double> multimode::fullMap()
{
//Map the model coefficients to a vector of doubles
...
}
void multimode::fullMap(std::vector<double> &data)
{
//Map a vector of doubles to the model coefficients
...
}
and genericBoxModel is an abstract class that all box models are based on.
The curvefit::fit function does the optimization based on the options passed to it:
curveFit^ curveFit::fit(System::ComponentModel::BackgroundWorker^ worker, System::ComponentModel::DoWorkEventArgs^ e, Options^ opts)
{
fcndelegate^ del = gcnew fcndelegate(this, &curveFit::fcn);
std::vector<double> data;
CurrentState^ state = gcnew CurrentState;
state->done = false;
state->stage = 0;
state->percentage = 0;
state->systemModel = systemModel;
worker->ReportProgress(state->percentage, state);
switch(opts->optimizationMethod)
{
case 0:
while(iterationNo < maxIterations)
{
data = systemModel.MapData();
OptimizationMethod0::step(some_parameters, data, (optmethods::costfunction)Runtime::InteropServices::Marshal::GetFunctionPointerForDelegate(del).ToPointer());
systemModel.MapData(data);
iterationNo++;
state->percentage = 0;
state->systemModel = systemModel;
worker->ReportProgress(state->percentage, state);
}
...
}
}
I'm passing the system model inside the state so that I can display the results of the
latest step on the screen, which doesn't work, but that is another question :-)
The start button calls the curvefit::fit function after initializing the system model:
private: System::Void btnStart_Click(System::Object^ sender, System::EventArgs^ e) {
systemModel.Clear();
for(int mode = 0; mode < modes; mode++)
{
switch(model)
{
case 0:
systemModel.Add(gcnew model0);
systemModel[mode]->coefficients[0] = 100.0 / double(mode + 1);
...
break;
...
}
}
btnStart->Enabled = false;
stStatusText->Text = "Calculating!";
Application::UseWaitCursor = true;
curveFit^ cf = gcnew curveFit;
fitCurve->RunWorkerAsync(cf);
}
private: System::Void fitCurve_DoWork(System::Object^ sender, System::ComponentModel::DoWorkEventArgs^ e) {
System::ComponentModel::BackgroundWorker^ worker;
worker = dynamic_cast<System::ComponentModel::BackgroundWorker^>(sender);
curveFit^ cf = safe_cast<curveFit^>(e->Argument);
cf->expExcitations = gcnew array<double>(expExcitations.Count);
expExcitations.CopyTo(cf->expExcitations);
cf->expResults = gcnew array<double>(expResults.Count);
expResults.CopyTo(cf->expResults);
cf->systemModel = systemModel;
cf->modes = modes;
e->Result = cf->fit(worker, e, options);
}
This works perfectly! But, in order to make the optimization process faster and more
successful, I wanted to use the results of previous optimizations as the initial guess
for the next run (if possible):
multimode oldmodel(systemModel);
systemModel.Clear();
for(int mode = 0; mode < modes; mode++)
{
switch(model)
{
case 0:
if(mode < oldmodel.modeNo() && oldmodel.isValid() && (oldmodel[mode]->model == 0))
systemModel.Add(oldmodel[mode]);
else
{
systemModel.Add(gcnew model0);
systemModel[mode]->coefficients[0] = 100.0 / double(mode + 1);
...
}
break;
...
Now, my problem is, after this change, it seems that the messages don't get passed
correctly: the first time the start button is clicked everything functions as it should,
but from then on, if the statement systemModel.Add(oldmodel[mode]); gets executed,
results remain the same as the initial guesses, and don't get updated after the fit
function is called.
So, why should these two lines(Add(oldmodel[mode]) and Add(gcnew model0)) give
such different results?
I appreciate any help, and would like to thank you in advance. I'm working on a project for one of my classes. Essentially performing merge sort using multithreading and reference classes. In main I'm just trying to create an initial thread that will begin the recursive mergesort. Each time the array is split a new thread is spawned to handle that subroutine. I don't need all of it done, i just don't under stand why my Thread constructor and ThreadStart delegate are not working. Thanks again!!
#include <iostream>
#include <vector>
#include <string>
#include <time.h>
#include <cstdlib>
using namespace System;
using namespace System::Threading;
public ref class MergeSort
{
private: int cnt;
public: MergeSort()
{
cnt = 0;
}
public: void mergeSort(char a[], int from, int to)
{
Thread^ current = Thread::CurrentThread;
if(from == to)
return;
int mid = (from + to)/2;
//Sort the first and the second half
//addThread(a, from, mid);
//addThread(a, mid+1, to);
//threads[0]->Join();
//threads[1]->Join();
merge(a, from, mid, to);
}
public: void merge(char a[], int from, int mid, int to)
{
Thread^ current = Thread::CurrentThread;
while (current ->ThreadState == ThreadState::Running)
{
int n = to-from + 1; // Size of range to be merged
std::vector<char> b(n);
int i1 = from; //Next element to consider in the first half
int i2 = mid + 1; //Next element to consider in the second half
int j = 0; //Next open position in b
//As long as neight i1 or i2 is past the end, move the smaller element into b
while(i1 <= mid && i2 <= to)
{
if(a[i1] < a[i2])
{
b[j] = a[i1];
i1++;
}
else
{
b[j] = a[i2];
i2++;
}
j++;
}
//Copy any remaining entries of the first half
while(i1 <= mid)
{
b[j] = a[i1];
i1++;
j++;
}
while(i2 <= to)
{
b[j] = a[i2];
i2++;
j++;
}
//Copy back from temporary vector
for(j = 0; j < n; j++)
a[from+j] = b[j];
}
}
};
void main()
{
char A[10];
for(int i = 0; i < 10; i++)
{
A[i] = ((char) ((rand() % (122-65)) + 65));
}
array<Thread^>^ tr = gcnew array<Thread^>(10);
MergeSort^ ms1 = gcnew MergeSort();
ThreadStart^ TS = gcnew ThreadStart(ms1, &MergeSort::mergeSort(A, 0, 10));
tr[0] = gcnew Thread(TS);
tr[0] -> Start();
system("pause");
}
The issue you are facing here is how to construct a ThreadStart delegate. You are trying to do too many things in the ThreadStart constructor. You cannot pass in arguments at this point because all it is looking for is a start location for the thread.
The delegate should be:
ThreadStart^ TS = gcnew ThreadStart(ms1, &MergeSort::mergeSort);
Since however you are passing in some state, I would recommend doing a bit more research on how that is done using C++\CLI. This MSDN topic should give you a start.
Edit:
Never mind, the problem was that I had to change the parameter of the method I tried to pass from Int32 to Object^.
I´m having a similar issue, though i think my problem are not the arguments. I´m passing those through during thread->Start().
I think my problem is rather that I´m trying to start the thread using a method of a ref class.
invalid delegate initializer -- function does not match the delegate type
Is the error I´m getting. Any Ideas?
void AddForcesAll() {
for (int index = 0; index < n; index++) {
Thread^ thread = gcnew Thread (gcnew ParameterizedThreadStart(this, &Bodies::AddForces));
thread->Start(index);
}
The Syntax worked fine for me for non referenced classes.