HB RFID attack. What am I missing? - security

Regarding the RFID protocol HB (not HB+) I am having a hard time understanding why my approach will not work.
So in HB we have the Tag and the Reader whom both share a secret X.
We are trying to figure out X.
The protocol goes as follow:
Lets suppose k = 3 bits.
From the papers I have read it seems the attack goes as follows.
set a = 001 and send say 1000 times
set a = 010 and send 1000 times
set a = 100 and send 1000 times
take the parity which comes out the majority of times for each a revealing x.
This makes sense to me and works fine.
My question is, why can I not simply set a to 001. Since a = 001 when it is ANDED with x it will always produce x which will then be XOR with v. The resulting Z will always be either x or it will be x XOR with 1. We then just take the output that happens the majority of the times which would be x since the prob of v = 1 < .5
I feel like I would only have to run this say 10 times rather then running every a multiple times.
Am i missing an important aspect of this.
Thanks

Why can I not simply set a to '001'?
x and a are of length k, so
x = { xk-1, ..., x0 }
a = { ak-1, ..., a0 }
If, k = 3, this would be
x = { x2, x1, x0 }
a = { a2, a1, a0 }
I.e. x and a would be one of '000', '001', '010', '011', '100', '101', '110', or '111'.
So the scalar product x &bullet; a results in
x &bullet; a = (x2 AND a2) XOR (x1 AND a1) XOR (x0 AND a0)
Consequently using a = '001' results in
z = x &bullet; '001' = (x2 AND '0') XOR (x1 AND '0') XOR (x0 AND '1') = x0
So you would not get the remaining digits of x (i.e. x2 and x1) in that case. Similarly, if you use an a with more than one bit set, e.g. a = '111', you would get
z = x &bullet; '111' = (x2 AND '1') XOR (x1 AND '1') XOR (x0 AND '1') = x2 XOR x1 XOR x0
and therefore could dervice the digits of x. Thus, you need to perform the protocol with a = '001', a = '010', and a = '100' in order to get each digit of x.
I feel like I would only have to run this say 10 times rather then running every a multiple times.
Well, for every round, you will get a correct result with a probability v. So the expected value would be
E[X] = v, if the correct digit is a '1', and
E[X] = 1 - v, if the correct digit is a '0'.
Hence, the mean value over all rounds (i.e. every sample you take) will approximate v for a '1' and will approximate 1 - v for a '0' for an infinite number of rounds. But this does not necessarily mean that you already reach this expected value after 1 round or 10 rounds. However, with every round you increase the confidence of getting the expected value.

Related

Splitting an int64 into two int32, performing math, then re-joining

I am working within constraints of hardware that has 64bit integer limit. Does not support floating point. I am dealing with very large integers that I need to multiply and divide. When multiplying I encounter an overflow of the 64bits. I am prototyping a solution in python. This is what I have in my function:
upper = x >> 32 #x is cast as int64 before being passed to this function
lower = x & 0x00000000FFFFFFFF
temp_upper = upper * y // z #Dividing first is not an option, as this is not the actual equation I am working with. This is just to make sure in my testing I overflow unless I do the splitting.
temp_lower = lower * y // z
return temp_upper << 32 | lower
This works, somewhat, but I end up losing a lot of precision (my result is off by sometimes a few million). From looking at it, it appears that this is happening because of the division. If sufficient enough it shifts the upper to the right. Then when I shift it back into place I have a gap of zeroes.
Unfortunately this topic is very hard to google, since anything with upper/lower brings up results about rounding up/down. And anything about splitting ints returns results about splitting them into a char array. Anything about int arithmetic bring up basic algebra with integer math. Maybe I am just not good at googling. But can you guys give me some pointers on how to do this?
Splitting like this is just a thing I am trying, it doesnt have to be the solution. All I need to be able to do is to temporarily go over 64bit integer limit. The final result will be under 64bit (After the division part). I remember learning in college about splitting it up like this and then doing the math and re-combining. But unfortunately as I said I am having trouble finding anything online on how to do the actual math on it.
Lastly, my numbers are sometimes small. So I cant chop off the right bits. I need the results to basically be equivalent to if I used something like int128 or something.
I suppose a different way to look at this problem is this. Since I have no problem with splitting the int64, we can forget about that part. So then we can pretend that two int64's are being fed to me, one is upper and one is lower. I cant combine them, because they wont fit into a single int64. So I need to divide them first by Z. Combining step is easy. How do I do the division?
Thanks.
As I understand it, you want to perform (x*y)//z.
Your numbers x,y,z all fit on 64bits, except that you need 128 bits for intermediate x*y.
The problem you have is indeed related to division: you have
h * y = qh * z + rh
l * y = ql * z + rl
h * y << 32 + l*y = (qh<<32 + ql) * z + (rh<<32 + rl)
but nothing says that (rh<<32 + rl) < z, and in your case high bits of l*y overlap low bits of h * y, so you get the wrong quotient, off by potentially many units.
What you should do as second operation is rather:
rh<<32 + l * y = ql' * z + rl'
Then get the total quotient qh<<32 + ql'
But of course, you must care to avoid overflow when evaluating left operand...
Since you are splitting only one of the operands of x*y, I'll assume that the intermediate result always fits on 96 bits.
If that is correct, then your problem is to divide a 3 32bits limbs x*y by a 2 32bits limbs z.
It is thus like Burnigel - Ziegler divide and conquer algorithm for division.
The algorithm can be decomposed like this:
obtain the 3 limbs a2,a1,a0 of multiplication x*y by using karatsuba for example
split z into 2 limbs z1,z0
perform the div32( (a2,a1,a0) , (z1,z0) )
here is some pseudo code, only dealing with positive operands, and with no guaranty to be correct, but you get an idea of implementation:
p = 1<<32;
function (a1,a0) = split(a)
a1 = a >> 32;
a0 = a - (a1 * p);
function (a2,a1,a0) = mul22(x,y)
(x1,x0) = split(x) ;
(y1,y0) = split(y) ;
(h1,h0) = split(x1 * y1);
assert(h1 == 0); -- assume that results fits on 96 bits
(l1,l0) = split(x0 * y0);
(m1,m0) = split((x1 - x0) * (y0 - y1)); -- karatsuba trick
a0 = l0;
(carry,a1) = split( l1 + l0 + h0 + m0 );
a2 = l1 + m1 + h0 + carry;
function (q,r) = quorem(a,b)
q = a // b;
r = a - (b * q);
function (q1,q0,r0) = div21(a1,a0,b0)
(q1,r1) = quorem(a1,b0);
(q0,r0) = quorem( r1 * p + a0 , b0 );
(q1,q0) = split( q1 * p + q0 );
function q = div32(a2,a1,a0,b1,b0)
(q,r) = quorem(a2*p+a1,b1*p+b0);
q = q * p;
(a2,a1)=split(r);
if a2<b1
(q1,q0,r)=div21(a2,a1,b1);
assert(q1==0); -- since a2<b1...
else
q0=p-1;
r=(a2-b1)*p+a1+b1;
(d1,d0) = split(q0*b0);
r = (r-d1)*p + a0 - d0;
while(r < 0)
q = q - 1;
r = r + b1*p + b0;
function t=muldiv(x,y,z)
(a2,a1,a0) = mul22(x,y);
(z1,z0) = split(z);
if z1 == 0
(q2,q1,r1)=div21(a2,a1,z0);
assert(q2==0); -- otherwise result will not fit on 64 bits
t = q1*p + ( ( r1*p + a0 )//z0);
else
t = div32(a2,a1,a0,z1,z0);

Determine if a sequence is an interleaving of a repetition of two strings

I have this task:
Let x be a string over some finite and fixed alphabet (think English alphabet). Given
an integer k we use x^k
to denote the string obtained by concatenating k copies of x. If x
is the string HELLO then x^3
is the string HELLOHELLOHELLO. A repetition of x is
a prefix of x^k
for some integer k. Thus HELL and HELLOHELL are both repetitions of
HELLO.
An interleaving of two strings x and y is any string that is obtained by shuffling a repetition
of x with a repetition of y. For example HELwoLOHELLrldwOH is an interleaving of
HELLO and world.
Describe an algorithm that takes three strings x, y, z as input and decides whether z is an
interleaving of x and y.
I've only come up with a solution, which has exponential complexity (We have pointer to the z word, and kind of a binary tree. In every node I have current states of possible words x and y (at the start both blank). I'm processing z, and nodes has one/two/no children depending on if the next character from z could be added to x word, y word or no word.) How could I get better than exponential complexity?
Suppose the two words x and y have length N1 and N2.
Construct a non-deterministic finite state machine with states (n1, n2) where 0 <= n1 < N1 and 0 <= n2 < N2. All states are accepting.
Transitions are:
c: (n1, n2) --> ((n1 + 1) % N1, n2) if x[n1] == c
c: (n1, n2) --> (n1, (n1 + 1) % n2) if y[n2] == c
This NDFSM recognises strings that are formed from interleaving repetitions of x and y.
Here's some ways to implement the NDFSM: https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton#Implementation
Here's a simple Python implementation.
def is_interleaved(x, y, z):
states = set([(0, 0)])
for c in z:
ns = set()
for i1, i2 in states:
if c == x[i1]:
ns.add(((i1+1)%len(x), i2))
if c == y[i2]:
ns.add((i1, (i2+1)%len(y)))
states = ns
return bool(states)
print is_interleaved('HELLO', 'world', 'HELwoLOHELLrldwOH')
print is_interleaved('HELLO', 'world', 'HELwoLOHELLrldwOHr')
print is_interleaved('aaab', 'aac', 'aaaabaacaab')
In the worst case, it'll run in O(N1 * N2 * len(z)) time and will use O(N1 * N2) space, but for many cases, the time complexity will better than this unless the strings x and y are repetitious.

Line segment intersection

I found this code snippet on raywenderlich.com, however the link to the explanation wasn't valid anymore. I "translated" the answer into Swift, I hope you can understand, it's actually quite easy even without knowing the language. Could anyone explain what exactly is going on here? Thanks for any help.
class func linesCross(#line1: Line, line2: Line) -> Bool {
let denominator = (line1.end.y - line1.start.y) * (line2.end.x - line2.start.x) -
(line1.end.x - line1.start.x) * (line2.end.y - line2.start.y)
if denominator == 0 { return false } //lines are parallel
let ua = ((line1.end.x - line1.start.x) * (line2.start.y - line1.start.y) -
(line1.end.y - line1.start.y) * (line2.start.x - line1.start.x)) / denominator
let ub = ((line2.end.x - line2.start.x) * (line2.start.y - line1.start.y) -
(line2.end.y - line2.start.y) * (line2.start.x - line1.start.x)) / denominator
//lines may touch each other - no test for equality here
return ua > 0 && ua < 1 && ub > 0 && ub < 1
}
You can find a detailed segment-intersection algorithm
in the book Computational Geometry in C, Sec. 7.7.
The SegSegInt code described there is available here.
I recommend avoiding slope calculations.
There are several "degenerate" cases that require care: collinear segments
overlapping or not, one segment endpoint in the interior of the other segments,
etc. I wrote the code to return an indication of these special cases.
This is what the code is doing.
Every point P in the segment AB can be described as:
P = A + u(B - A)
for some constant 0 <= u <= 1. In fact, when u=0 you get P=A, and you getP=B when u=1. Intermediate values of u will give you intermediate values of P in the segment. For instance, when u = 0.5 you will get the point in the middle. In general, you can think of the parameter u as the ratio between the lengths of AP and AB.
Now, if you have another segment CD you can describe the points Q on it in the same way, but with a different u, which I will call v:
Q = C + v(D - C)
Again, keep in mind that Q lies between C and D if, and only if, 0 <= v <= 1 (same as above for P).
To find the intersection between the two segments you have to equate P=Q. In other words, you need to find u and v, both between 0 and 1 such that:
A + u(B - A) = C + v(D - C)
So, you have this equation and you have to see if it is solvable within the given constraints on u and v.
Given that A, B, C and D are points with two coordinates x,y each, you can open the equation above into two equations:
ax + u(bx - ax) = cx + v(dx - cx)
ay + u(by - ay) = cy + v(dy - cy)
where ax = A.x, ay = A.y, etc., are the coordinates of the points.
Now we are left with a 2x2 linear system. In matrix form:
|bx-ax cx-dx| |u| = |cx-ax|
|by-ay cy-dy| |v| |cy-ay|
The determinant of the matrix is
det = (bx-ax)(cy-dy) - (by-ay)(cx-dx)
This quantity corresponds to the denominator of the code snippet (please check).
Now, multiplying both sides by the cofactor matrix:
|cy-dy dx-cx|
|ay-by bx-ax|
we get
det*u = (cy-dy)(cx-ax) + (dx-cx)(cy-ay)
det*v = (ay-by)(cx-ax) + (bx-ax)(cy-ay)
which correspond to the variables ua and ub defined in the code (check this too!)
Finally, once you have u and v you can check whether they are both between 0 and 1 and in that case return that there is intersection. Otherwise, there isn't.
For a given line the slope is
m=(y_end-y_start)/(x_end-x_start)
if two slopes are equal, the lines are parallel
m1=m1
(y1_end-y_start)/(x1_end-x1_start)=(y2_end-y2_start)/(x2_end-x2_start)
And this is equivalent to checking that the denominator is not zero,
Regarding the rest of the code, find the explanation on wikipedia under "Given two points on each line"

How to implement Frobenius pseudoprime algorithm?

Someone told me that the Frobenius pseudoprime algorithm take three times longer to run than the Miller–Rabin primality test but has seven times the resolution. So then if one where to run the former ten times and the later thirty times, both would take the same time to run, but the former would provide about 233% more analyse power. In trying to find out how to perform the test, the following paper was discovered with the algorithm at the end:
A Simple Derivation for the Frobenius Pseudoprime Test
There is an attempt at implementing the algorithm below, but the program never prints out a number. Could someone who is more familiar with the math notation or algorithm verify what is going on please?
Edit 1: The code below has corrections added, but the implementation for compute_wm_wm1 is missing. Could someone explain the recursive definition from an algorithmic standpoint? It is not "clicking" for me.
Edit 2: The erroneous code has been removed, and an implementation of the compute_wm_wm1 function has been added below. It appears to work but may require further optimization to be practical.
from random import SystemRandom
from fractions import gcd
random = SystemRandom().randrange
def find_prime_number(bits, test):
number = random((1 << bits - 1) + 1, 1 << bits, 2)
while True:
for _ in range(test):
if not frobenius_pseudoprime(number):
break
else:
return number
number += 2
def frobenius_pseudoprime(integer):
assert integer & 1 and integer >= 3
a, b, d = choose_ab(integer)
w1 = (a ** 2 * extended_gcd(b, integer)[0] - 2) % integer
m = (integer - jacobi_symbol(d, integer)) >> 1
wm, wm1 = compute_wm_wm1(w1, m, integer)
if w1 * wm != 2 * wm1 % integer:
return False
b = pow(b, (integer - 1) >> 1, integer)
return b * wm % integer == 2
def choose_ab(integer):
a, b = random(1, integer), random(1, integer)
d = a ** 2 - 4 * b
while is_square(d) or gcd(2 * d * a * b, integer) != 1:
a, b = random(1, integer), random(1, integer)
d = a ** 2 - 4 * b
return a, b, d
def is_square(integer):
if integer < 0:
return False
if integer < 2:
return True
x = integer >> 1
seen = set([x])
while x * x != integer:
x = (x + integer // x) >> 1
if x in seen:
return False
seen.add(x)
return True
def extended_gcd(n, d):
x1, x2, y1, y2 = 0, 1, 1, 0
while d:
n, (q, d) = d, divmod(n, d)
x1, x2, y1, y2 = x2 - q * x1, x1, y2 - q * y1, y1
return x2, y2
def jacobi_symbol(n, d):
j = 1
while n:
while not n & 1:
n >>= 1
if d & 7 in {3, 5}:
j = -j
n, d = d, n
if n & 3 == 3 == d & 3:
j = -j
n %= d
return j if d == 1 else 0
def compute_wm_wm1(w1, m, n):
a, b = 2, w1
for shift in range(m.bit_length() - 1, -1, -1):
if m >> shift & 1:
a, b = (a * b - w1) % n, (b * b - 2) % n
else:
a, b = (a * a - 2) % n, (a * b - w1) % n
return a, b
print('Probably prime:\n', find_prime_number(300, 10))
You seem to have misunderstood the algorithm completely due to not being familiar with the notation.
def frobenius_pseudoprime(integer):
assert integer & 1 and integer >= 3
a, b, d = choose_ab(integer)
w1 = (a ** 2 // b - 2) % integer
That comes from the line
W0 ≡ 2 (mod n) and W1 ≡ a2b−1 − 2 (mod n)
But the b-1 doesn't mean 1/b here, but the modular inverse of b modulo n, i.e. an integer c with b·c ≡ 1 (mod n). You can most easily find such a c by continued fraction expansion of b/n or, equivalently, but with slightly more computation, by the extended Euclidean algorithm. Since you're probably not familiar with continued fractions, I recommend the latter.
m = (integer - d // integer) // 2
comes from
n − (∆/n) = 2m
and misunderstands the Jacobi symbol as a fraction/division (admittedly, I have displayed it here even more like a fraction, but since the site doesn't support LaTeX rendering, we'll have to make do).
The Jacobi symbol is a generalisation of the Legendre symbol - denoted identically - which indicates whether a number is a quadratic residue modulo an odd prime (if n is a quadratic residue modulo p, i.e. there is a k with k^2 ≡ n (mod p) and n is not a multiple of p, then (n/p) = 1, if n is a multiple of p, then (n/p) = 0, otherwise (n/p) = -1). The Jacobi symbol lifts the restriction that the 'denominator' be an odd prime and allows arbitrary odd numbers as 'denominators'. Its value is the product of the Legendre symbols with the same 'numerator' for all primes dividing n (according to multiplicity). More on that, and how to compute Jacobi symbols efficiently in the linked article.
The line should correctly read
m = (integer - jacobi_symbol(d,integer)) // 2
The following lines I completely fail to understand, logically, here should follow the calculation of
Wm and Wm+1 using the recursion
W2j ≡ Wj2 − 2 (mod n)
W2j+1 ≡ WjWj+1 − W1 (mod n)
An efficient method of using that recursion to compute the required values is given around formula (11) of the PDF.
w_m0 = w1 * 2 // m % integer
w_m1 = w1 * 2 // (m + 1) % integer
w_m2 = (w_m0 * w_m1 - w1) % integer
The remainder of the function is almost correct, except of course that it now gets the wrong data due to earlier misunderstandings.
if w1 * w_m0 != 2 * w_m2:
The (in)equality here should be modulo integer, namely if (w1*w_m0 - 2*w_m2) % integer != 0.
return False
b = pow(b, (integer - 1) // 2, integer)
return b * w_m0 % integer == 2
Note, however, that if n is a prime, then
b^((n-1)/2) ≡ (b/n) (mod n)
where (b/n) is the Legendre (or Jacobi) symbol (for prime 'denominators', the Jacobi symbol is the Legendre symbol), hence b^((n-1)/2) ≡ ±1 (mod n). So you could use that as an extra check, if Wm is not 2 or n-2, n can't be prime, nor can it be if b^((n-1)/2) (mod n) is not 1 or n-1.
Probably computing b^((n-1)/2) (mod n) first and checking whether that's 1 or n-1 is a good idea, since if that check fails (that is the Euler pseudoprime test, by the way) you don't need the other, no less expensive, computations anymore, and if it succeeds, it's very likely that you need to compute it anyway.
Regarding the corrections, they seem correct, except for one that made a glitch I previously overlooked possibly worse:
if w1 * wm != 2 * wm1 % integer:
That applies the modulus only to 2 * wm1.
Concerning the recursion for the Wj, I think it is best to explain with a working implementation, first in toto for easy copy and paste:
def compute_wm_wm1(w1,m,n):
a, b = 2, w1
bits = int(log(m,2)) - 2
if bits < 0:
bits = 0
mask = 1 << bits
while mask <= m:
mask <<= 1
mask >>= 1
while mask > 0:
if (mask & m) != 0:
a, b = (a*b-w1)%n, (b*b-2)%n
else:
a, b = (a*a-2)%n, (a*b-w1)%n
mask >>= 1
return a, b
Then with explanations in between:
def compute_wm_wm1(w1,m,n):
We need the value of W1, the index of the desired number, and the number by which to take the modulus as input. The value W0 is always 2, so we don't need that as a parameter.
Call it as
wm, wm1 = compute_wm_wm1(w1,m,integer)
in frobenius_pseudoprime (aside: not a good name, most of the numbers returning True are real primes).
a, b = 2, w1
We initialise a and b to W0 and W1 respectively. At each point, a holds the value of Wj and b the value of Wj+1, where j is the value of the bits of m so far consumed. For example, with m = 13, the values of j, a and b develop as follows:
consumed remaining j a b
1101 0 w_0 w_1
1 101 1 w_1 w_2
11 01 3 w_3 w_4
110 1 6 w_6 w_7
1101 13 w_13 w_14
The bits are consumed left-to-right, so we have to find the first set bit of m and place our 'pointer' right before it
bits = int(log(m,2)) - 2
if bits < 0:
bits = 0
mask = 1 << bits
I subtracted a bit from the computed logarithm just to be entirely sure that we don't get fooled by a floating point error (by the way, using log limits you to numbers of at most 1024 bits, about 308 decimal digits; if you want to treat larger numbers, you have to find the base-2 logarithm of m in a different way, using log was the simplest way, and it's just a proof of concept, so I used that here).
while mask <= m:
mask <<= 1
Shift the mask until it's greater than m,so the set bit points just before m's first set bit. Then shift one position back, so we point at the bit.
mask >>= 1
while mask > 0:
if (mask & m) != 0:
a, b = (a*b-w1)%n, (b*b-2)%n
If the next bit is set, the value of the initial portion of consumed bits of m goes from j to 2*j+1, so the next values of the W sequence we need are W2j+1 for a and W2j+2 for b. By the above recursion formula,
W_{2j+1} = W_j * W_{j+1} - W_1 (mod n)
W_{2j+2} = W_{j+1}^2 - 2 (mod n)
Since a was Wj and b was Wj+1, a becomes (a*b - W_1) % n and b becomes (b * b - 2) % n.
else:
a, b = (a*a-2)%n, (a*b-w1)%n
If the next bit is not set, the value of the initial portion of consumed bits of m goes from j to 2*j, so a becomes W2j = (Wj2 - 2) (mod n), and b becomes
W2j+1 = (Wj * Wj+1 - W1) (mod n).
mask >>= 1
Move the pointer to the next bit. When we have moved past the final bit, mask becomes 0 and the loop ends. The initial portion of consumed bits of m is now all of m's bits, so the value is of course m.
Then we can
return a, b
Some additional remarks:
def find_prime_number(bits, test):
while True:
number = random(3, 1 << bits, 2)
for _ in range(test):
if not frobenius_pseudoprime(number):
break
else:
return number
Primes are not too frequent among the larger numbers, so just picking random numbers is likely to take a lot of attempts to hit one. You will probably find a prime (or probable prime) faster if you pick one random number and check candidates in order.
Another point is that such a test as the Frobenius test is disproportionally expensive to find that e.g. a multiple of 3 is composite. Before using such a test (or a Miller-Rabin test, or a Lucas test, or an Euler test, ...), you should definitely do a bit of trial division to weed out most of the composites and do the work only where it has a fighting chance of being worth it.
Oh, and the is_square function isn't prepared to deal with arguments less than 2, divide-by-zero errors lurk there,
def is_square(integer):
if integer < 0:
return False
if integer < 2:
return True
x = integer // 2
should help.

Stuck on a Concurrent programming example, in pseudocode(atomic actions/fine-grained atomicity)

My book presents a simple example which I'm a bit confused about:
It says, "consider the following program, and assume that the fine-grained atomic actions are reading and writing the variables:"
int y = 0, z = 0;
co x = y+z; // y=1; z=2; oc;
"If x = y + z is implemented by loading a register with y and then adding z to it, the final value of x can be 0,1,2, or 3. "
2? How does 2 work?
Note: co starts a concurrent process and // denote parallel-running statements
In your program there are two parallel sequences:
Sequence 1: x = y+z;
Sequence 2: y=1; z=2;
The operations of sequence 1 are:
y Copy the value of y into a register.
+ z Add the value of z to the value in the register.
x = Copy the value of the register into x.
The operations of sequence 2 are:
y=1; Set the value of y to 1.
z=2; Set the value of z to 2.
These two sequences are running at the same time, though the steps within a sequence must occur in order. Therefore, you can get an x value of '2' in the following sequence:
y=0
z=0
y Copy the value of y into a register. (register value is now '0')
y=1; Set the value of y to 1. (has no effect on the result, we've already copied y to the register)
z=2; Set the value of z to 2.
+ z Add the value of z to the value in the register. (register value is now '2')
x = Copy the value of the register into x. (the value of x is now '2')
Since they are assumed to run in parallel, I think an even simpler case could be y=0, z=2 when the assignment x = y + z occurs.

Resources