Downside to transparent structs? - struct

I've noticed that the structs in Racket are not transparent by default. This seems odd to me as in my (limited) experience when you want to see the value of something, you would like to view its contents! Specifically, I am referring to using the #:transparent keyword/mechanism when defining a struct.
Why would Racket have structs be opaque by default? My only guess is that they are preventing displaying too much content to the console in the event that you are displaying or evaluating a very large struct for some reason.

From the docs, it seems like structs are opaque by default to encourage more modular programs. When transparent structs are provided, they automatically leak their internal representation.
Structure types are opaque by default, because opaque structure instances provide more encapsulation guarantees. That is, a library can use an opaque structure to encapsulate data, and clients of the library cannot manipulate the data in the structure except as allowed by the library.

Related

When should I use Pin<Arc<T>> in Rust?

I'm pretty new to Rust and have a couple different implementations of a method that includes a closure referencing self. To use the reference in the closure effectively, I've been using Arc<Self> (I am multithreading) and Pin<Arc<Self>>.
I would like to make this method as generally memory efficient as possible. I assume pinning the Arc in memory would help with this. However, (a) I've read that Arcs are pinned and (b) it seems like Pin<Arc<T>> may require additional allocations.
What is Pin<Arc<T>> good for?
Adding Pin around some pointer type does not change the behavior of the program. It only adds a restriction on what further code you can write (and even that, only if the T in Pin<Arc<T>> is not Unpin, which most types are).
Therefore, there is no "memory efficiency" to be gained by adding Pin.
The only use of Pin is to allow working with types that require they be pinned to use them, such as Futures.

Why is Box called like that in Rust?

Box<> is explained like this on the Rust Book:
... allow you to store data on the heap rather than the stack. What remains on the stack is the pointer to the heap data.
With a description like that, I would expect the described object to be called Heap<> or somethingHeapsomethingelse (DerefHeap, perhaps?). Instead, we use Box.
Why was the name Box chosen?
First, Heap is a very overloaded term, and importantly a heap is an abstract datastructure often used to implement things like priority queues. Having a type called Heap which is not a heap would be extremely confusing, a good reason to avoid that.
Second, "box" is related to the concept of "boxing" or "boxed" objects, in languages which strongly distinguish between value and reference types e.g. Java or Javascript: https://en.wikipedia.org/wiki/Object_type_(object-oriented_programming), in those a "boxed" type is the heap-allocated version of a value type e.g. int/Integer in java, or number/Number in Javascript.
Rust's Box performs an operation which is similar in spirit. Box also originally had a built-in "lifting" operator called box (it's still an internal operation and was originally planned to be stabilised for placement new), as such "box"/"boxing" makes sense linguistically in a way "heap"/"heaping" really does not (as "heaping" hints at a lot of things being put on a heap).

Serialization in Haskell

From the bird's view, my question is: Is there a universal mechanism for as-is data serialization in Haskell?
Introduction
The origin of the problem does not root in Haskell indeed. Once, I tried to serialize a python dictionary where a hash function of objects was quite heavy. I found that in python, the default dictionary serialization does not save the internal structure of the dictionary but just dumps a list of key-value pairs. As a result, the de-serialization process is time-consuming, and there is no way to struggle with it. I was certain that there is a way in Haskell because, at my glance, there should be no problem transferring a pure Haskell type to a byte-stream automatically using BFS or DFS. Surprisingly, but it does not. This problem was discussed here (citation below)
Currently, there is no way to make HashMap serializable without modifying the HashMap library itself. It is not possible to make Data.HashMap an instance of Generic (for use with cereal) using stand-alone deriving as described by #mergeconflict's answer, because Data.HashMap does not export all its constructors (this is a requirement for GHC). So, the only solution left to serialize the HashMap seems to be to use the toList/fromList interface.
Current Problem
I have quite the same problem with Data.Trie bytestring-trie package. Building a trie for my data is heavily time-consuming and I need a mechanism to serialize and de-serialize this tire. However, it looks like the previous case, I see no way how to make Data.Trie an instance of Generic (or, am I wrong)?
So the questions are:
Is there some kind of a universal mechanism to project a pure Haskell type to a byte string? If no, is it a fundamental restriction or just a lack of implementations?
If no, what is the most painless way to modify the bytestring-trie package to make it the instance of Generic and serialize with Data.Store
There is a way using compact regions, but there is a big restriction:
Our binary representation contains direct pointers to the info tables of objects in the region. This means that the info tables of the receiving process must be laid out in exactly the same way as from the original process; in practice, this means using static linking, using the exact same binary and turning off ASLR. This API does NOT do any safety checking and will probably segfault if you get it wrong. DO NOT run this on untrusted input.
This also gives insight into universal serialization is not possible currently. Data structures contain very specific pointers which can differ if you're using different binaries. Reading in the raw bytes into another binary will result in invalid pointers.
There is some discussion in this GitHub issue about weakening this requirement.
I think the proper way is to open an issue or pull request upstream to export the data constructors in the internal module. That is what happened with HashMap which is now fully accessible in its internal module.
Update: it seems there is already a similar open issue about this.

How do I use nested Vecs with wasm-bindgen?

It doesn't appear that nested Vecs work with wasm-bindgen. Is that correct?
My goal is to have a Game of Life grid in Rust that I can return as rows, rather than a 1D Vec which requires the JavaScript to handle the indexing. Two workarounds I've thought of are:
Implement a sort of custom "iterator" in Rust, which is a method which returns the rows one-by-one.
Hand a 1D array to JavaScript but write a wrapper in JavaScript which handles the indexing and exposes some sort of an iterator to the consumer.
I hesitate to use either of these because I want this library to be usable by JavaScript and native Rust, and I don't think either would be very idiomatic in pure Rust land. Any other suggestions?
You're correct that wasm-bindgen today doesn't support returning types like Vec<Vec<u8>>.
A good rule of thumb for WebAssembly is that big chunks of data (like vectors) should always live in the same location to avoid losing too much performance. This means that you might want to explore an interface where a JS object wraps a pointer into WASM memory, and all of its methods work with row/column indices but modify WASM memory to keep it as the source of truth.
If that doesn't work out, then the best way to implement this today is either of the strategies you mentioned as well, although both of those require some level of JS glue code to be written as well.

How do I do automatic data serialization of data objects?

One of the huge benefits in languages that have some sort of reflection/introspecition is that objects can be automatically constructed from a variety of sources.
For example, in Java I can use the same objects for persisting to a db (with Hibernate), serializing to XML (with JAXB), and serializing to JSON (json-lib). You can do the same in Ruby and Python also usually following some simple rules for properties or annotations for Java.
Thus I don't need lots "Domain Transfer Objects". I can concentrate on the domain I am working in.
It seems in very strict FP like Haskell and Ocaml this is not possible.
Particularly Haskell. The only thing I have seen is doing some sort of preprocessing or meta-programming (ocaml). Is it just accepted that you have to do all the transformations from the bottom upwards?
In other words you have to do lots of boring work to turn a data type in haskell into a JSON/XML/DB Row object and back again into a data object.
I can't speak to OCaml, but I'd say that the main difficulty in Haskell is that deserialization requires knowing the type in advance--there's no universal way to mechanically deserialize from a format, figure out what the resulting value is, and go from there, as is possible in languages with unsound or dynamic type systems.
Setting aside the type issue, there are various approaches to serializing data in Haskell:
The built-in type classes Read/Show (de)serialize algebraic data types and most built-in types as strings. Well-behaved instances should generally be such that read . show is equivalent to id, and that the result of show can be parsed as Haskell source code constructing the serialized value.
Various serialization packages can be found on Hackage; typically these require that the type to be serialized be an instance of some type class, with the package providing instances for most built-in types. Sometimes they merely require an automatically derivable instance of the type-reifying, reflective metaprogramming Data class (the charming fully qualified name for which is Data.Data.Data), or provide Template Haskell code to auto-generate instances.
For truly unusual serialization formats--or to create your own package like the previously mentioned ones--one can reach for the biggest hammer available, sort of a "big brother" to Read and Show: parsing and pretty-printing. Numerous packages are available for both, and while it may sound intimidating at first, parsing and pretty-printing are in fact amazingly painless in Haskell.
A glance at Hackage indicates that serialization packages already exist for various formats, including binary data, JSON, YAML, and XML, though I've not used any of them so I can't personally attest to how well they work. Here's a non-exhaustive list to get you started:
binary: Performance-oriented serialization to lazy ByteStrings
cereal: Similar to binary, but a slightly different interface and uses strict ByteStrings
genericserialize: Serialization via built-in metaprogramming, output format is extensible, includes R5RS sexp output.
json: Lightweight serialization of JSON data
RJson: Serialization to JSON via built-in metaprogramming
hexpat-pickle: Combinators for serialization to XML, using the "hexpat" package
regular-xmlpickler: Serialization to XML of recursive data structures using the "regular" package
The only other problem is that, inevitably, not all types will be serializable--if nothing else, I suspect you're going to have a hard time serializing polymorphic types, existential types, and functions.
For what it's worth, I think the pre-processor solution found in OCaml (as exemplified by sexplib, binprot and json-wheel among others) is pretty great (and I think people do very similar things with Template Haskell). It's far more efficient than reflection, and can also be tuned to individual types in a natural way. If you don't like the auto-generated serializer for a given type foo, you can always just write your own, and it fits beautifully into the auto-generated serializers for types that include foo as a component.
The only downside is that you need to learn camlp4 to write one of these for yourself. But using them is quite easy, once you get your build-system set up to use the preprocessor. It's as simple as adding with sexp to the end of a type definition:
type t = { foo: int; bar: float }
with sexp
and now you have your serializer.
You wanted
to do lot of boring work to turn a data type in haskell into JSON/XML/DB Row object and back again into a data object.
There are many ways to serialize and unserialize data types in Haskell. You can use for example,
Data.Binary
Text.JSON
as well as other common formants (protocol buffers, thrift, xml)
Each package often/usually comes with a macro or deriving mechanism to allow you to e.g. derive JSON. For Data.Binary for example, see this previous answer: Erlang's term_to_binary in Haskell?
The general answer is: we have many great packages for serialization in Haskell, and we tend to use the existing class 'deriving' infrastructure (with either generics or template Haskell macros to do the actual deriving).
My understanding is that the simplest way to serialize and deserialize in Haskell is to derive from Read and Show. This is simple and isn't fullfilling your requirements.
However there are HXT and Text.JSON which seem to provide what you need.
The usual approach is to employ Data.Binary. This provides the basic serialisation capability. Binary instances for data types are easy to write and can easily be built out of smaller units.
If you want to generate the instances automatically then you can use Template Haskell. I don't know of any package to do this, but I wouldn't be surprised if one already exists.

Resources