This is as per the official documentation.
All writes are sequential, which is the primary reason that writes perform so well in
Cassandra. No reads or seeks of any kind are required for writing a value to Cassandra
because all writes are append operations.
am confused because in case there is insert operation and duplicate primary key case, cassandra will require the search first from memtable or in case if data is flushed to sstable.
so if user id with value 123 is already present and we are inserting row with 123, it fails because internally it does read based on that key. this is the doubt i have if someone can clarify pls.
There is no notion of duplicate keys in Cassandra. Every change written to Cassandra has a timestamp and Cassandra does timestamp resolution meaning the data with the latest timestamp always wins and returned. In read path, the content of the key from SSTable is merged with the content of the same key in memtable if exists and the data with latest timestamp is returned. It is worth nothing that each column has a timestamp.
In example:
Let's assume at time 139106495223456 you write the following:
123 => {column1:foo column1_timstamp:139106495223456}
Then after few microseconds (139106495223470) you write to the same key:
123 => {column1:bar column1_timstamp:139106495223470}
Both operations will succeed. When you try to read the kay the one with column1:bar is returned because it has the latest timestamp.
Now you may wonder how this works with deletes. Deletes are written the same way except the column/key which is being deleted will be marked with tombstone. If the tombstone has laster timestamp, the row or column will be considered deleted.
You may wonder how this plays with sequential writes to disk as these tombstones or old columns will consume space. It is true. That is why compaction exists and it takes care of compacting and removing expired tomstones.
You can read more about Cassandra write/read path here:
http://www.planetcassandra.org/blog/category/Cassandra%20read%20path
http://www.datastax.com/docs/1.1/dml/about_writes
Related
We use a very simple key-value datamodel in Cassandra, and our partition key is in 17 SSTables. I would like to understand how read works in our concrete case.
If I undestand correctly, general Cassandra reads will need to search for the newest version of each column in the memtable and in different SSTables, until it retrieves all columns and merges them.
Since SSTables are sorted by time, and our data-model is single-column, Ideally our read operations should just hit the newest SSTable containing our partition key since this will contain the whole data.
Will our read operations hit the 17 SSTables? or just the newest one containing the searched partition key?
Cassandra will search all of them as it isn't sure which columns exist where (DML occurs at the cell level and because of that, variants can exist where reconciliation is performed). Reads are done at the partition level. However, Cassandra can filter out sstables if it knows the partition key doesn't exist in certain ones. That's why compaction is important for optimal reads - to remove the unnecessary cells.
Will our read operations hit the 17 SSTables? or just the newest one containing the searched partition key?
To add to Jim's answer, Cassandra has something called a bloom filter for this. Essentially, it's a probabilistic structure that can tell you one of two things:
The SSTable might contain the data requested.
OR
The SSTable definitely does not contain the data requested.
This should prevent Cassandra from having to scan all 17 SSTables. My advice would be to run a query with TRACING ON in cqlsh, and it'll tell you just how many SSTables it needed to look through.
In Datastax's documentation, it said:
During a write, Cassandra adds each new row to the database without
checking on whether a duplicate record exists. This policy makes it
possible that many versions of the same row may exist in the database.
As far as I understand, that means there are possibly more than 1 non-compacted SSTables that contains different versions of the same row. How does Cassandra handle duplicated data when it read data from these SSTables?
#quangh : As already stated in document :
This is why Cassandra performs another round of comparisons during a read process. When a client requests data with a particular primary key, Cassandra retrieves many versions of the row from one or more replicas. The version with the most recent timestamp is the only one returned to the client ("last-write-wins").
All the writes operation have a timestamp associated. In this case different node will have different version of same row. But during read operation Cassandra will pick row with latest timestamp. I hope this solves your query.
I currently have an application that persists event driven real time streaming data to a column family which is modeled as such:
CREATE TABLE current_data (
account_id text,
value text,
PRIMARY KEY (account_id)
)
Data is being sent every X seconds per accountId, so we overwrite an existing row every time we receive an event. This data contains current real time information, and we only care about the most recent event (no use for older data, that is why we insert over an already existing key).
From the application user end - we query a select by account_id statement.
I was wondering if there is a better way to model this behaviour and was looking at Cassandra's best practices and similar questions asked (How to model Cassandra DB for Time Series, server metrics).
Thought about something like this:
CREATE TABLE current_data_2 (
account_id text,
time timeuuid,
value text,
PRIMARY KEY (account_id, time) WITH CLUSTERING ORDER BY (time DESC)
)
No overwrites will occur, and each insertion will also be done with a TTL (can be a TTL of a few minutes).
The question is HOW better, if at all, is the second data model over the first one. From what I understand, the main advantage will be in the READS - since the data is ordered by time all I need to do is a simple
SELECT * FROM metrics WHERE account_id = <id> LIMIT 1
while in the first data model Cassandra actually reads ALL rows that where overwritten the same key and then chooses the last one by its write timestamp (please correct me if I'm wrong).
Thanks.
First of all I encourage you to examine the official documentation about read path.
data is ordered by time
This is only true in your second case, when Cassandra reads a single SSTable and MemTable (check the flow diagram).
Cassandra actually reads ALL rows that where overwritten the same key
and then chooses the last one by its write timestamp
This happens at the Merge Cells by Timestamp step in the documentation (again check the flow diagram). Notice, that in each SSTable the number of rows will be one in your first case.
In both of your cases the main driving factor is that how many SSTables do you have to check during read. It's somewhat independent from how many records each SSTable contains.
But on the second case you have much bigger SSTabes which leads to longer SSTable compaction. Also TTL expiration performs additional writes. So first case is somewhat preferable.
We are processing the oldest data as it comes into the time-series table. I am taking care to make sure that the oldest entries expire as soon as they are processed. Expectation is to have all the deletes at the bottom part of the clustering column of TimeUUID. So query will always read time slot without any deleted entries.
Will this scheme work? Are there any impacts of the expired columns that I should be aware of?
So keeping the timeuuid as part of clustering key guarantee the sort order to provide the most recent data.
If Cassandra 3.1 (DSE 5.x) and above :-
Now regarding the deletes, "avoid manual and use TWCS": Here is how
Let's say every X minutes your job process the data. Lets say X = 5min, (hopefully less than 24hours). Set the compaction to TWCS: Time Window Compaction Strategy and lets assume with TTL of 24hours.
WITH compaction= {
'compaction_window_unit': 'HOURS',
'compaction_window_size': '1',
};
Now there are 24buckets created in a day, each with one hour of data. These 24 buckets simply relates to 24 sstables (after compaction) in your Cassandra data directory. Now during the 25hour, the entire 1st bucket/sstable would automatically get dropped by TTL. Hence instead of coding for deletes, let Cassandra take care of the cleanup. The beauty of TWCS is to TTL the entire data within that sstable.
Now the READs from your application always goes to the recent bucket, 24th sstable in this case always. So the reads would never have to scan through the tombstones (caused by TTL).
If Cassandra 2.x or DSE 4.X, if TWCS isn't available yet :-
A way out till you upgrade to Cassandra 3.1 or above is to use artificial buckets. Say you introduce a time bucket variable as part of the partition key and keep the bucket value to be date and hour. This way each partition is different and you could adjust the bucket size to match the job processing interval.
So when you delete, only the processed partition gets deleted and will not come in the way while reading unprocessed ones. So scanning of tombstones could be avoided.
Its an additional effort on application side to start writing to the correct partition based on the current date/time bucket. But its worth it in production scenario to avoid Tombstone scan.
You can use TWCS to easily manage expired data, and perform filtering by some timestamp column on query time, to ensure that your query always getting the last results.
How do you "taking care" about oldest entries expiry? Cassandra will not show records with expired ttl, but they will persist in sstables until next compaction for this sstable. If you are deleting the rows by yourself, you can't make sure that your query will always read latest records, since Cassandra is eventually consistent, and theoretically there's can be some moments, when you will read stale data (or many such moments, based on your consistency settings).
I have a table in Cassandra where I populate some rows with 1000s of entries (each row is with 10000+ columns). The entries in the rows are very frequently updated, basically just a field (which is an integer) is updated with different values. All other values for the columns remains unmodified. My question is, will the updates be done in-place ? How good is Cassandra for frequent update of entries ?
First of all every update is also a sequential write for cassandra so, as far as cassandra goes it does not make any difference to cassandra whether you update or write.
The real question is how fast do you need to read those writes to be available for reading? As #john suggested, first all the writes are written to a mutable CQL Memtable which resides in memory. So, every update is essentially appended as a new sequential entry to memtable for a particular CQL table. It is concurrently periodically also written to `commitlog' (every 10 seconds) for durability.
When Memtable is full or total size for comittlog is reached, cassandra flushes all the data to immutable Sorted String Table (SSTable). After the flush, compaction is the procedure where all the PK entries for the new column values are kept and all the previous values (before update) are removed.
With flushing frequently comes the overhead on frequent sequential writes to disk and compaction which could take lot of I/O and have a serious impact on cassandra performance.
As far as read goes, first cassandra will try to read from row cache (if its enabled) or from memtable. If it fails there it will go to bloom filter, key cache, partition summary, partition index and finally to SSTable in that order. When the data is collected for all the column values, its aggregate in memory and the column values with latest timestamp are returned to client after aggregation and an entry is made in row cache for that partition key`.
So, yes when you query a partition key, it will scan across all the SSTable for that particular CQL table and the memtable for all the column values that are not being flushed to disk yet.
Initially these updates are stored in an in-memory data structure called Memtable. Memtables are flushed to immutable SSTables at regular intervals.
So a single wide row will be read from various SSTables. It is during a process called 'compacation' the different SSTables will be merged into a bigger SSTable on the disk.
Increasing thresholds for flushing Memtables is one way of optimization. If updates are coming very fast before Memtable is flushed to disk, i think that update should be in-place in memory, not sure though.
Also each read operation checks Memtables first, if data is still there, it will be simply returned – this is the fastest possible access.
Cassandra read path:
When a read request for a row comes in to a node, the row must be combined from all SSTables on that node that contain columns from the row in question
Cassandra write path:
No, in place updates are not possible.
As #john suggested, if you have frequent writes then you should delay the flush process. During the flush, the multiple writes to the same partition that are stored in the MemTable will be written as a single partition in the newly created SSTable.
C* is fine for heavy writes. However, you'll need to monitor the number of SSTables accessed per read. If the # is too high, then you'll need to review your compaction strategy.