read() in linux for event file - linux

I'm writing a program to track the mouse movements in linux. I read in another post that this can be done using read() system call to read the EventX file related to the mouse. I earlier was reading the serial port file and i used the read() to read it. But, then i sent in a character array to it and got back the serial characters. But, it doesnt seem to be in the mouse's case. The lines:
struct input_event ie;
read(fd, &ie, sizeof(struct input_event)
are used to read it. Here the ie is a struct. But i used to send in a char buffer in the serial port case. So, my question is: how do I know what struct/buffer to send. I got to know the answer for the above two code lines after googling, but if I want to read some other file,how would i know what struct/buffer to send. Please help me.
Thank you.

The input subsystem in Linux uses a standarized format to deliver its messages. It is actually quite simple:
You open the relevant input file, usually /dev/input/event<n>, using the open() system call.
You read input events from that file, using the read() function, as you noted in your question.
Every event from that file has a well known structure: that is struct input_event. You don't need to know the exact layout of that structure, that is done by the compiler. Just include the relevant header file: #include <linux/input.h>.
What you do want to know are the fields of this structure that are useful, and what they mean. I recommend you to read the official documentation as well as the input.h source.

Related

Designing a Linux char device driver so multiple processes can read

I notice that for serial devices, e.g. /dev/ttyUSB0, multiple processes can open the device but only one process gets the bytes (whichever reads them first).
However, for the Linux input API, e.g. /dev/input/event0, multiple processes can open the device, and all of the processes are able to read the input events.
My current goal:
I'd like to write a driver for several multi-position switches (e.g. like a slider switch with 3 or 4 possible positions), where apps can get a notification of any switch position changes. Ideally I'd like to use the Linux input API, however it seems that the Linux input API has no support for the concept of multi-position switches. So I'm looking at making a custom driver with similar capabilities to the Linux input API.
Two questions:
From a driver design point-of-view, why is there that difference in behaviour between Linux input API and Linux serial devices? I reckon it could be useful for multiple processes to all be able to open one serial port and all listen to incoming bytes.
What is a good way to write a Linux character device driver so that it's like the Linux input API, so multiple processes can open the device and read all the data?
The distinction is partly historical and partly due to the different expectation models.
The event subsystem is designed for unidirectional notification of simple events from multiple writers into the system with very little (or no) configuration options.
The tty subsystem is intended for bidirectional end-to-end communication of potentially large amounts of data and provides a reasonably flexible (albeit fairly baroque) configuration mechanism.
Historically, the tty subsystem was the main mechanism of communicating with the system: you plug your "teletype" into a serial port and bits went in and out. Different teletypes from different vendors used different protocols and thus the termios interface was born. To make the system perform well in a multi-user context, buffering was added in the kernel (and made configurable). The expectation model of the tty subsystem is that of a point-to-point link between moderately intelligent endpoints who will agree on what the data passing between them will look like.
While there are circumstances where "single writer, multiple readers" would make sense in the tty subsystem (GPS receiver connected to a serial port, continually reporting its position, for instance), that's not the main purpose of the system. But you can easily accomplish this "multiple readers" in userspace.
The event system on the other hand, is basically an interrupt mechanism intended for things like mice and keyboards. Unlike teletypes, input devices are unidirectional and provide little or no control over the data they produce. There is also little point in buffering the data. Nobody is going to be interested in where the mouse moved ten minutes ago.
I hope that answers your first question.
For your second question: "it depends". What do you want to accomplish? And what is the "longevity" of the data? You also have to ask yourself whether it makes sense to put the complexity in the kernel or if it wouldn't be better to put it in userspace.
Getting data out to multiple readers isn't particularly difficult. You could create a receive buffer per reader and fill each of them as the data comes in. Things get a little more interesting if the data comes in faster than the readers can consume it, but even that is mostly a solved problem. Look at the network stack for inspiration!
If your device is simple and just produces events, maybe you just want to be an input driver?
Your second question is a lot more difficult to answer without knowing more about what you want to accomplish.
Update after you added your specific goal:
When I do position switches, I usually just create a character device and implement poll and read. If you want to be fancy and have a lot of switches, you could do mmap but I wouldn't bother.
Userspace just opens your /dev/foo and reads the current state and starts polling. When your switches change state, you just wake up the readers and they they'll read again. All your readers will wake up, they'll all read the new state and everyone will be happy.
Be careful to only wake up readers when your switches are 'settled'. Many position switches are very noisy and they'll bounce around a fair bit.
In other words: I would ignore the input system altogether for this. As you surmise, position switches are not really "inputs".
How a character device handles these kinds of semantics is completely up to the driver to define and implement.
It would certainly be possible, for example, to implement a driver for a serial device that will deliver all read data to every process that has the character driver open. And it would also be possible to implement an input device driver that delivers events to only one process, whichever one is queued up to receive the latest event. It's all a matter of coding the appropriate implementation.
The difference is that it all comes down to a simple question: "what makes sense". For a serial device, it's been decided that it makes more sense to handle any read data by a single process. For an input device, it's been decided that it makes more sense to deliver all input events to every process that has the input device open. It would be reasonable to expect that, for example, one process might only care about a particular input event, say pointer button #3 pressed, while another process wants to process all pointer motion events. So, in this situation, it might make more sense to distribute all input events to all concerned parties.
I am ignoring some side issues, for simplicity, like in the situation of serial data being delivered to all reading processes what should happen when one of them stops reading from the device. That's also something that would be factored in, when deciding how to implement the semantics of a particular device.
What is a good way to write a Linux character device driver so that it's like the Linux input API, so multiple processes can open the device and read all the data?
See the .open member of struct file_operations for the char device. Whenever userspace opens the device, then the .open function is called. It can add the open file to a list of open files for the device (and then .release removes it).
The char device data struct should most likely use a kernel struct list_head to keep a list of open files:
struct my_dev_data {
...
struct cdev cdev;
struct list_head file_open_list;
...
}
Data for each file:
struct file_data {
struct my_dev_data *dev_data;
struct list_head file_open_list;
...
}
In the .open function, add the open file to dev_data->file_open_list (use a mutex to protect these operations as needed):
static int my_dev_input_open(struct inode * inode, struct file * filp)
{
struct my_dev_data *dev_data;
dev_data = container_of(inode->i_cdev, struct my_dev_data, cdev);
...
/* Allocate memory for file data and channel data */
file_data = devm_kzalloc(&dev_data->pdev->dev,
sizeof(struct file_data), GFP_KERNEL);
...
/* Add open file data to list */
INIT_LIST_HEAD(&file_data->file_open_list);
list_add(&file_data->file_open_list, &dev_data->file_open_list);
...
file_data->dev_data = dev_data;
filp->private_data = file_data;
}
The .release function should remove the open file from dev_data->file_open_list, and release the memory of file_data.
Now that the .open and .release functions maintain the list of open files, it is possible for all open files to read data. Two possible strategies:
A separate read buffer for each open file. When data is received, it is copied into the buffers of all open files.
A single read buffer for the device, but a separate read pointer for each open file. Data can be freed from the buffer once it has been read through all open files.
Serial to input/event
You could try to look into serial mouse driver source code.
This seem to be what you're searching for: from a TTYSx build a input/event device.
Simplier: creating a server, instead of a driver.
Historically, the 1st character device I remember is /dev/lp0.
To be able to write on it from many source, without overlap or other conflict,
a LPR server was wrotten.
To share a device, you have to
open this device in exclusive (rw) mode.
Create a socket (un*x or TCP) to listen on
redirect request from socket's clients to the device and maybe
store device status (from reading device's answers)
send device status to socket's clients when required.

Reading Microphone Data by Polling using ALSA [or V4L2]

I am trying to read data from multiple microphones in Linux (ubuntu 14.04). I have a specific constraint that the reading from microphones should be via polling(so no waiting until there is data, although the data comes in high frequency). I wanted to know if that is possible in Linux? Unfortunately audio capture is not the area of my expertise and I would like to know if the choice of using Alsa is a good one. To better understand the problem, here is a pseudo-code that I had in mind:
open_the_audio_device();
set_the_parameters_of_the_audio_device();
while (!done)
{
poll_result=poll_the_devices(); //other non-audio devices are also polled here preferably, something like using select on all different file descriptors of audio, video, socket, etc.
if(poll_success_for_audio_device)
receive_audio_from_the_device_that_has_data();
else
do_some_other_very_fast_stuff_and_start_loop_again();
}
close_the_device();
My questions are 2 fold:
Is Alsa a good choice for this?
Can it be done somehow with some library that gives me a file descriptor so that I can use it with select function? if so this is optimal because there are other non-audio devices also working with select.
Thank you for your attention.
To prevent the snd_pcm_read*() calls from blocking, enable non-blocking mode with snd_pcm_nonblock().
To get pollable file descriptors, call snd_pcm_poll_descriptors_count() and snd_pcm_poll_descriptors().
It is possible to have multiple descriptors because some plugins might implement notifications differently.
To translate the result of a poll() on those descriptors back into a POLLIN/POLLOUT value, call snd_pcm_poll_descriptors_revents().

"cat" command killed when reading from a Linux device driver

I have an assignment in my Operating Systems class to make a simple pseudo-stack Linux device driver. So for an example, if I was to write "Hello" to the device driver, it would return "olleH" when I read from it. We have to construct a tester program in C to just call upon the read/write functions of the device driver to just demonstrate that it functions in a FILO manner. I have done all of this, and my tester program, in my opinion, demonstrates the purpose of the assignment; however, out of curiosity, inside BASH I execute the following commands:
echo "Test" > /dev/driver
cat /dev/driver
where /dev/driver is the special file I created using "mknod". However, when I do this, I get a black screen full of errors. After I swap back to the GUI view using CNTRL+ALT+F7, I see that BASH has returned "Killed".
Does anyone know what could be causing this to happen? I am confused since my tester program calls open(), read(), and write() with everything functioning as it should.
If I need to show some code, just ask.
The function in your device driver that writes to the buffer you are providing it is most likely causing this issue.
To debug, you can do the following:
First, make sure the read part is fine. You can printk your internal buffer after you read from input to ensure this.
Second, in your write function, printk some information instead of actually writing anything and make sure everything is fine.
Also, make sure the writer makes it clear that the write has ended. I'm not particularly sure about device drivers, but you either need to return 0 as the number of bytes written when called a second time, or set an eof variable (if that is one of the arguments to your function)

Is there a way to peek a value from a tty device

Im writing a program which reads and writes to serial. I was wondering, is there a way to peek the next value from a tty device such as /dev/ttyS0 without removing it from the queue. I have looked for documentation or even source code for this module and have been so far, unable to find it. If anyone knows where it is, or which ioctls are available, please let me know.
Using a combination of getc and ungetc will allow you to peek a single byte.
If you need more than one byte, you'll need to buffer it manually.

How can I read a whole line of input in Assembly?

The only subroutine I know of capable of reading a user's alphabetical input is read_char, but how I want to be able to read the user's whole input of char no matter how long.
I have a vague notion that I have to make memory room to store the whole input or something? I'm really lost as I'm not certain if Assembly has a C++ equivalent of reading strings.
Thanks in advance.
Well, you should have a limit when reading input from the user, otherwise your program might not work properly anymore (see buffer overflow for more informations), so making room for the input and ensure the input won't exceed the buffer is very important.
Now, to get a string you have to call a dos interrupt, giving a pointer to your buffer and some other stuff. It will read until a carriage return is met.
But I think your prof wants you to read using his read_char, so (since this is homework), I'll give you a small advice: you have to do a loop and read chars until..

Resources