Conditionally disable shared library build - cygwin

I’ve written a C library that builds using Libtool, and I’d like to only build static libraries on Cygwin. To that end, I placed
if test "$target_os" = "cygwin"; then
AC_DISABLE_SHARED
fi
in my configure.ac.
This does indeed disable building shared libraries on Cygwin; however, it also disables building them everywhere else. I assume this is because expanding AC_DISABLE_SHARED causes some unfortunate side effects.
How can I use Libtool to avoid building shared libraries on Cygwin while still building them on other platforms?

I'm not sure $target_os is what you want. $host_os is the name for the system the code will run on. The 'target' triple is rarely used outside of building compilers / toolchains.
Even though the configure script might still say yes / enabled for shared libraries, you can override the result by setting the enable_shared|static variables.
AC_CANONICAL_HOST
...
LT_INIT
case $host_os in
cygwin*)
AC_MSG_RESULT([explicitly disabled shared libraries for $host])
enable_shared=no; enable_static=yes ;;
esac
These variables aren't documented, so it's technically a hack - but it's basically behaving like any other AC_ARG_ENABLE option. Your original idea might still work if it appears before LT_INIT, but this approach overrides any configure options.

Related

Is it feasible to bundle dynamic libraries with dependencies in a Tcl Starkit/Starpack?

I've written a Tcl script that uses the TclMagick extension together with GraphicsMagick.
For GraphicsMagick, I've both the Windows DLLs and the Linux SO files. I want to be able to make two Starkit/Starpack applications bundled with those libraries: one for Windows (with the DLLs) and one for Linux (with the SO files).
Is this reasonable? Can it be done?
EDIT
I cannot seem to use DLLs with dependencies under Windows. In my case, I want to use the TclMagick extension, but it needs the GraphicsMagick's DLLs and the starkit cannot find those. What should I do in this situation?
Yes. In the lib/tclmagick subdirectory of $starkit::topdir, you'll place the dynamic library and an appropriate pkgIndex.tcl file that loads the library. Use a Makefile or some other build script to use the correct dynamic library file, and generate the pkgIndex, depending the target platform.
The directory hierarchy:
appname.vfs/
main.tcl
lib/
app-appname/
appname.tcl
pkgIndex.tcl
tclmagick/
pkgIndex.tcl
tclMagick.so
package require tclmagick will work as you expect, for some capitalization of "tclmagick"
You can do it, but you might need some extra windows trickery to get things to work properly.
Windows has quite a few options to load dependent libraries, this page explains the basics:
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682586%28v=vs.85%29.aspx
There are is one part that can help you:
If a DLL with the same module name is already loaded in memory, the system checks only for redirection and a manifest before resolving to the loaded DLL, no matter which directory it is in. The system does not search for the DLL.
So, to get the dependencies right, you could get the dependent libraries loaded into memory first (sadly you cannot use load for this, but could use something from twapi, e.g. twapi::load_libary (see http://wiki.tcl.tk/9886) to get the library loaded from some temporary location).
Sadly most OS's do not provide an easy or portable way to load a dynamic library directly from memory, so you need to copy the dependent libs to a temporary location first (you can do it with appropriate hacks or by using something like an installable filesystem on windows/FUSE on Linux).
In most cases the easiest route is to just link all dependencies statically into the extension instead.

Explanation sought: libtool, automake, shared libraries (and Fortran)

The problem I had is solved. I'm posting this to solicit an explanation as to why the solution actually works. I've gotten great feedback here before.
I have a legacy code base that used a very simplistic build system, and my project is to migrate that to Autotools for customization and, particularly, building shared libraries. The main library is written in C, but must also be linkable from Fortran (for legacy purposes), and is distributed with some test codes in F77. The authors organized the source code into modules...
src_module1/
src_module2/
...
testc/
testf77/
Their built the library lib/libmain.a by compiling code in the src_*/ directories and archiving the objects with ranlib.
My first approach was to build a shared library from each src_*/ separately and "link" all of these into one shared library. Using Autotools, the src_module1/Makefile.am would contain
noinst_LTLIBRARIES = libmodule1.la
libmodule1_la_SOURCES = ...
and so on for the other modules, and finally the lib/Makefile.am would need only:
lib_LTLIBRARIES = libmain.la
libmain_la_SOURCES =
libmain_la_LIBADD = $(top_srcdir)/src_module1/libmodule1.la ...
This seemed to work perfectly. However, when the code in testc/ was compiled and linked against libmain.la, a "symbols not found" error was issued.
Thinking that this was an issue with libtool or shared libraries, I tried building static only, basically changing all .la to .a and all _LTLIBRARIES to _LIBRARIES. Same problem. This time, however, noticing the error "ranlib: warning for library: libmain.a the table of contents is empty (no object file members in the library define global symbols)" when trying to link libmain.a itself.
The solution that I found seems like a hack. I did not build Makefiles for any of the src_*/ directories, but instead used only for the lib/ directory and its Makefile.am had the lines:
lib_LTLIBRARIES = libmain.la
libmain_la_SOURCES = [all sources from all ../src_modules/ ]
This worked. The compiled programs in testc/ linked against libmain.la without issue. One of the "modules" is a set of Fortran bindings that wrap other C functions in the library. Even the Fortran codes in testf77/ linked against libmain.la properly.
Could someone carefully explain what happens when libtool builds a shared library? Or even when building a static library? Why is it that several static libraries can't be linked together to make one static library? Why are symbols only available when libtool/ranlib builds the library "from sources"? And what about installing a shared/static library, i.e. moving it to the /usr/local/lib --- what happens there? The Wikipedia article on static and shared libraries isn't really detailed enough for me.
I do appreciate all efforts to make sense of my longwinded question.
What you first tried ought to work. I am using this kind of setup all the time (in a C++ context). It's also documented, and part of the Automake test suite (although maybe not with Fortran).
A libtool library that is not installable, i.e., one declared with noinst_LTLIBRARIES, is called a libtool convenience library. That noinst_ makes a big difference in what is built. Even if Libtool is configured to build shared libraries, a libtool convenience library is not actually a shared library: it is just a set of object files (compiled as PIC so that they can be latter be used in a shared library) stored in an archive. You can use a libtool convenience library anywhere using this set of objects would make sense, e.g., to build a shared library.
When multiple libtool convenience libraries are LIBADDed to an installable libtool library (such as your libmain.la), Libtool has to unpack the archives containing the objects of each convenience library and link them into the final library.
There is a trap that is worth noting here: when building a shared library out of
convenience libraries, if the _SOURCES variable is empty Automake does not know which linker to use and default to the C linker. If you want to trick Automake into using the linking rule for some specific language, you can declare a nodist_EXTRA_..._SOURCES source file that do not have to exist. (See the Libtool Convenience Libraries section of the Automake manual for an example.)
Maybe that was your problem? If you have some Fortran files in the sources of some of your modules (your description suggests these are only C files), the Fortran linker will be used to build libmain.la only if a Fortran file appears in the source files declared for that libtool library. And the C linker will be used when libmain_la_SOURCES is empty.
Otherwise, I have no idea why it didn't work.
There is an small error in your example:
libmain_la_LIBADD = $(top_srcdir)/src_module1/libmodule1.la
should be
libmain_la_LIBADD = $(top_builddir)/src_module1/libmodule1.la
because the library is not created in the source directory. However I assume this is just a typo, and you won't see the difference unless you do a VPATH build or run make distcheck.
Your second try, using _LIBRARIES without Libtool is not expected to work.
_LIBRARIES can only be used to declare static archives, and in this case _LIBADD may only contain object files, not other static archives. Unpacking an archive to reuse its objects into another archive can be tricky to do portably. Automake's answer to this problem has always been: install Libtool and use _LTLIBRARIES (Libtool can be configured to build only static libraries).

Using library with different names within autoconf

I am trying to build an application with OpenSync 0.4 (0.3.9 indeed) dependency.
In the project's configure.ac the opensync library is written as libopensync1. However, this doesn't build on my Gentoo system. Changing libopensync1 to libopensync does fix the issue for me.
I searched with Google and found that libopensync1 is used in some distributions, while libopensync in others. So how to resolve this issue in configure.ac?
Thanks.
The macro AC_SEARCH_LIBS does what you need. (There is much heated debate about whether or not pkg-config should ever be used. If you choose to rely on it, ptomato gives a reasonable approach.) Simply add this to your configure.ac:
AC_SEARCH_LIBS([osync_mapping_new],[opensync1 opensync],[],
[AC_MSG_ERROR([can't find opensync])])
This will first look for a library named opensync1; if
it doesn't find that, it will look for opensync.
The primary drawback of using pkg-config is that most projects that
rely on it do not actually check if the data provided by the .pc
file is reliable, so configure may succeed but a subsequent build
will fail. It is always possible for a user to set PKG_CONFIG=true
when running configure and completely eliminate all of the data
provided by any associated .pc files, setting LIBS, CFLAGS, etc by
hand the 'old-fashioned' way.
The primary drawback of not using pkg-config is that the user
has to set LIBS, CFLAGS, etc. the old-fashioned way. In practice,
this is pretty trivial, and all pkg-config has done is move the
data from a single CONFIG_SITE file to separately maintained
.pc files for each package.
If you do use PKG_MODULE_CHECK, follow it up with a call to
AC_CHECK_LIB or AC_SEARCH_LIBS to validate the data in whatever
.pc file was located by PKG_CHECK_MODULES
I'm assuming that the place at which this occurs inside your configure.ac is inside a PKG_CHECK_MODULES call.
Looking at the libopensync sources, it seems that libopensync1 is the newer name, and libopensync is the old name. So, we'll use pkg-config macros to look for the newer name unless it doesn't exist.
Put this in your configure.ac:
# Check if libopensync1 is known to pkg-config, and if not, look for libopensync instead
PKG_CHECK_EXISTS([libopensync1], [OPENSYNC=libopensync1], [OPENSYNC=libopensync])
Then later in your PKG_CHECK_MODULES call, replace libopensync1 with $OPENSYNC.

Linking with a different .so file in linux

I'm trying to compile a piece of software which has the standard build process e.g.
configure
make
make install
The software requires a library e.g. libreq.so which is installed in /usr/local/lib. However, my problem is I'd like to build the software and link it with a different version of the same library (i have the source for the library as well) that I've installed in /home/user/mylibs.
My question is, how do I compile and link the software against the library in /home/user/mylibs rather than the one in /usr/local/lib
I tried setting "LD_LIBRARY_PATH" to include /home/user/mylibs but that didn't work.
Thanks!
When you have an autoconf configure script, use:
CPPFLAGS=-I/home/user/include LDFLAGS=-L/home/user/mylibs ./configure ...
This adds the nominated directory to the list of directories searched for headers (usually necessary when you're using a library), and adds the other nominated directory to the list searched for actual libraries.
I use this all the time - on my work machine, /usr/local is 'maintained' by MIS and contains obsolete code 99.9% of the time (and is NFS-mounted, read-only), so I struggle to avoid using it at all and maintain my own, more nearly current, versions of the software under /usr/gnu. It works for me.
Try using LD_PRELOAD set to your actual file.
LD_LIBRARY_PATH is for finding the dynamic link libraries at runtime. At compiling you should add -L parameters to gcc/g++ to specify in which directory the *.so files are. You also need to add the library name with -l<NAME> (where the library is libNAME.so).
Important! For linking you not only need the libNAME.so file but a libNAME.a is needed too.
When you run the application, don't forget to add the dir to the LD_LIBRARY_PATH.
When you added the /home/user/mylibs to the LD_LIBRARY_PATH did you add it to the front or end of the existing paths? The tokens are searched in-order so you will want yours to appear first in the list.
Also, many standard build environments that use configure will allow you to specify an exact library for each required piece. You will have to run ./configure --help but you should see something like --using-BLAH-lib=/path/to/your/library or similar.

Building Boost on Linux - library names

I am trying to build an application which depends on Boost. So I downloaded Boost 1_41_0 to my Linux box and followed the instructions found on the Boost site for Unix variants,
http://www.boost.org/doc/libs/1_41_0/more/getting_started/unix-variants.html.
They basically suggest that I run ./bjam install, which I did. The build completed successfully. However, the library names don't seem to match the Boost naming convention described both in the documentation above, and what is specified in the makefile of the application I am trying to build.
I noticed that there are a bunch of options that I can specify to bjam and I tried to play with those, but no matter what happens I can't seem to get it quite right. My understanding is that the libraries should go into the $BOOST_ROOT/lib directory. This is where the libraries show up, but named:
libboost_thread.a
libboost_thread.so
libboost_thread.so.1.41.0
I'd expect them to be named libboost_thread-gcc41-mt-d-1_41_0 or something similar.
I did try ./bjam --build-type=complete --layout=tagged and I see:
libboost_thread.a
libboost_thread-mt.a
libboost_thread-mt-d.a
libboost_thread-mt-d.so
libboost_thread-mt-d.so.1.41.0
libboost_thread-mt-s.a
libboost_thread-mt-sd.a
libboost_thread-mt.so
libboost_thread-mt.so.1.41.0
libboost_thread.so
libboost_thread.so.1.41.0
So, I am not sure if I should just make stage my -L directory? Is there any documentation which describe this in more detail?
The names was changed in 1.40.0 - see in release notes:
Build System
The default naming of libraries in
Unix-like environment now matches
system conventions, and does not
include various decorations.
They probably forgot to update this part in the build documentation.
There are two variables here. First is "install" vs. "stage" (default). "install" copies both libraries and headers into a directory -- /usr/local by default, and you can then remove source tree. "stage" puts libraries to "stage/lib", and you should add "-L /stage/lib -I " flags.
Second is --layout=versioned and --layout=system. It seems like you have discovered what they do already, and indeed, system is default since 1.40. The getting started guide fails to mention this, and I've added an action item to update it. Ideally, you should talk to the authors of the application to use the system naming of boost libraries. If that's not possible, then building with --layout=versioned is the only option.
From the Boost documentation at http://www.boost.org/doc/libs/1_35_0/more/getting_started/windows.html#library-naming, the convention is:
-mt Threading tag: indicates that the library was built with multithreading support enabled. Libraries built without multithreading support can be identified by the absence of -mt.
-d ABI tag: encodes details that affect the library's interoperability with other compiled code. For each such feature, a single letter is added to the tag:
Key Use this library when:
s linking statically to the C++ standard library and compiler runtime support libraries.
g using debug versions of the standard and runtime support libraries.
y using a special debug build of Python.
d building a debug version of your code.
p using the STLPort standard library rather than the default one supplied with your compiler.
n using STLPort's deprecated “native iostreams” feature.
For example, if you build a debug version of your code for use with debug versions of the static runtime library and the STLPort standard library in “native iostreams” mode, the tag would be: -sgdpn. If none of the above apply, the ABI tag is ommitted.

Resources