How to write the type declaration of an Haskell function with no arguments? - haskell

How to write the type declaration of an haskell function without arguments?

There is no such thing as a function without arguments, that would be just a value. Sure, you can write such a declaration:
five :: Int
five = 5
It might look more like what you asked for if I make it
five' :: () -> Int
five' () = 5
but that's completely equivalent (unless you write something ridiculous like five' undefined) and superfluent1.
If what you mean is something like, in C
void scream() {
printf("Aaaah!\n");
}
then that's again not a function but an action. (C programmers do call it function, but you might better say procedure, everybody would understand.) What I said above holds pretty much the same way, you'd use
scream :: IO()
scream = putStrLn "Aaaah!"
Note that the empty () do in this case not have anything to do with not having arguments (that follows already from the absence of -> arrows), instead it means there is also no return value, it's just a "side-effect-only" action.
1Actually, it differs in one relevant way: five is a constant applicative form, which sort of means it's memoised. If I had defined such a constant in some roundabout way (e.g. sum $ 5 : replicate 1000000 0) then the lengthy calculation would be carried out only once, even if five is evaluated multiple times during a program run. OTOH, wherever you would have written out five' (), the calculation would have been done anew.

Since functions in Haskell are pure (their result only depends on their arguments), the equivalent of a function with no arguments is just a value. For example, one = 1.

Related

How does return statement work in Haskell? [duplicate]

This question already has answers here:
What's so special about 'return' keyword
(3 answers)
Closed 5 years ago.
Consider these functions
f1 :: Maybe Int
f1 = return 1
f2 :: [Int]
f2 = return 1
Both have the same statement return 1. But the results are different. f1 gives value Just 1 and f2 gives value [1]
Looks like Haskell invokes two different versions of return based on return type. I like to know more about this kind of function invocation. Is there a name for this feature in programming languages?
This is a long meandering answer!
As you've probably seen from the comments and Thomas's excellent (but very technical) answer You've asked a very hard question. Well done!
Rather than try to explain the technical answer I've tried to give you a broad overview of what Haskell does behind the scenes without diving into technical detail. Hopefully it will help you to get a big picture view of what's going on.
return is an example of type inference.
Most modern languages have some notion of polymorphism. For example var x = 1 + 1 will set x equal to 2. In a statically typed language 2 will usually be an int. If you say var y = 1.0 + 1.0 then y will be a float. The operator + (which is just a function with a special syntax)
Most imperative languages, especially object oriented languages, can only do type inference one way. Every variable has a fixed type. When you call a function it looks at the types of the argument and chooses a version of that function that fits the types (or complains if it can't find one).
When you assign the result of a function to a variable the variable already has a type and if it doesn't agree with the type of the return value you get an error.
So in an imperative language the "flow" of type deduction follows time in your program Deduce the type of a variable, do something with it and deduce the type of the result. In a dynamically typed language (such as Python or javascript) the type of a variable is not assigned until the value of the variable is computed (which is why there don't seem to be types). In a statically typed language the types are worked out ahead of time (by the compiler) but the logic is the same. The compiler works out what the types of variables are going to be, but it does so by following the logic of the program in the same way as the program runs.
In Haskell the type inference also follows the logic of the program. Being Haskell it does so in a very mathematically pure way (called System F). The language of types (that is the rules by which types are deduced) are similar to Haskell itself.
Now remember Haskell is a lazy language. It doesn't work out the value of anything until it needs it. That's why it makes sense in Haskell to have infinite data structures. It never occurs to Haskell that a data structure is infinite because it doesn't bother to work it out until it needs to.
Now all that lazy magic happens at the type level too. In the same way that Haskell doesn't work out what the value of an expression is until it really needs to, Haskell doesn't work out what the type of an expression is until it really needs to.
Consider this function
func (x : y : rest) = (x,y) : func rest
func _ = []
If you ask Haskell for the type of this function it has a look at the definition, sees [] and : and deduces that it's working with lists. But it never needs to look at the types of x and y, it just knows that they have to be the same because they end up in the same list. So it deduces the type of the function as [a] -> [a] where a is a type that it hasn't bothered to work out yet.
So far no magic. But it's useful to notice the difference between this idea and how it would be done in an OO language. Haskell doesn't convert the arguments to Object, do it's thing and then convert back. Haskell just hasn't been asked explicitly what the type of the list is. So it doesn't care.
Now try typing the following into ghci
maxBound - length ""
maxBound : "Hello"
Now what just happened !? minBound bust be a Char because I put it on the front of a string and it must be an integer because I added it to 0 and got a number. Plus the two values are clearly very different.
So what is the type of minBound? Let's ask ghci!
:type minBound
minBound :: Bounded a => a
AAargh! what does that mean? Basically it means that it hasn't bothered to work out exactly what a is, but is has to be Bounded if you type :info Bounded you get three useful lines
class Bounded a where
minBound :: a
maxBound :: a
and a lot of less useful lines
So if a is Bounded there are values minBound and maxBound of type a.
In fact under the hood Bounded is just a value, it's "type" is a record with fields minBound and maxBound. Because it's a value Haskell doesn't look at it until it really needs to.
So I appear to have meandered somewhere in the region of the answer to your question. Before we move onto return (which you may have noticed from the comments is a wonderfully complex beast.) let's look at read.
ghci again
read "42" + 7
read "'H'" : "ello"
length (read "[1,2,3]")
and hopefully you won't be too surprised to find that there are definitions
read :: Read a => String -> a
class Read where
read :: String -> a
so Read a is just a record containing a single value which is a function String -> a. Its very tempting to assume that there is one read function which looks at a string, works out what type is contained in the string and returns that type. But it does the opposite. It completely ignores the string until it's needed. When the value is needed, Haskell first works out what type it's expecting, once it's done that it goes and gets the appropriate version of the read function and combines it with the string.
now consider something slightly more complex
readList :: Read a => [String] -> a
readList strs = map read strs
under the hood readList actually takes two arguments
readList' (Read a) -> [String] -> [a]
readList' {read = f} strs = map f strs
Again as Haskell is lazy it only bothers looking at the arguments when it's needs to find out the return value, at that point it knows what a is, so the compiler can go and fine the right version of Read. Until then it doesn't care.
Hopefully that's given you a bit of an idea of what's happening and why Haskell can "overload" on the return type. But it's important to remember it's not overloading in the conventional sense. Every function has only one definition. It's just that one of the arguments is a bag of functions. read_str doesn't ever know what types it's dealing with. It just knows it gets a function String -> a and some Strings, to do the application it just passes the arguments to map. map in turn doesn't even know it gets strings. When you get deeper into Haskell it becomes very important that functions don't know very much about the types they're dealing with.
Now let's look at return.
Remember how I said that the type system in Haskell was very similar to Haskell itself. Remember that in Haskell functions are just ordinary values.
Does this mean I can have a type that takes a type as an argument and returns another type? Of course it does!
You've seen some type functions Maybe takes a type a and returns another type which can either be Just a or Nothing. [] takes a type a and returns a list of as. Type functions in Haskell are usually containers. For example I could define a type function BinaryTree which stores a load of a's in a tree like structure. There are of course lots of much stranger ones.
So, if these type functions are similar to ordinary types I can have a typeclass that contains type functions. One such typeclass is Monad
class Monad m where
return a -> m a
(>>=) m a (a -> m b) -> m b
so here m is some type function. If I want to define Monad for m I need to define return and the scary looking operator below it (which is called bind)
As others have pointed out the return is a really misleading name for a fairly boring function. The team that designed Haskell have since realised their mistake and they're genuinely sorry about it. return is just an ordinary function that takes an argument and returns a Monad with that type in it. (You never asked what a Monad actually is so I'm not going to tell you)
Let's define Monad for m = Maybe!
First I need to define return. What should return x be? Remember I'm only allowed to define the function once, so I can't look at x because I don't know what type it is. I could always return Nothing, but that seems a waste of a perfectly good function. Let's define return x = Just x because that's literally the only other thing I can do.
What about the scary bind thing? what can we say about x >>= f? well x is a Maybe a of some unknown type a and f is a function that takes an a and returns a Maybe b. Somehow I need to combine these to get a Maybe b`
So I need to define Nothing >== f. I can't call f because it needs an argument of type a and I don't have a value of type a I don't even know what 'a' is. I've only got one choice which is to define
Nothing >== f = Nothing
What about Just x >>= f? Well I know x is of type a and f takes a as an argument, so I can set y = f a and deduce that y is of type b. Now I need to make a Maybe b and I've got a b so ...
Just x >>= f = Just (f x)
So I've got a Monad! what if m is List? well I can follow a similar sort of logic and define
return x = [x]
[] >>= f = []
(x : xs) >>= a = f x ++ (xs >>= f)
Hooray another Monad! It's a nice exercise to go through the steps and convince yourself that there's no other sensible way of defining this.
So what happens when I call return 1?
Nothing!
Haskell's Lazy remember. The thunk return 1 (technical term) just sits there until someone needs the value. As soon as Haskell needs the value it know what type the value should be. In particular it can deduce that m is List. Now that it knows that Haskell can find the instance of Monad for List. As soon as it does that it has access to the correct version of return.
So finally Haskell is ready To call return, which in this case returns [1]!
The return function is from the Monad class:
class Applicative m => Monad (m :: * -> *) where
...
return :: a -> m a
So return takes any value of type a and results in a value of type m a. The monad, m, as you've observed is polymorphic using the Haskell type class Monad for ad hoc polymorphism.
At this point you probably realize return is not an good, intuitive, name. It's not even a built in function or a statement like in many other languages. In fact a better-named and identically-operating function exists - pure. In almost all cases return = pure.
That is, the function return is the same as the function pure (from the Applicative class) - I often think to myself "this monadic value is purely the underlying a" and I try to use pure instead of return if there isn't already a convention in the codebase.
You can use return (or pure) for any type that is a class of Monad. This includes the Maybe monad to get a value of type Maybe a:
instance Monad Maybe where
...
return = pure -- which is from Applicative
...
instance Applicative Maybe where
pure = Just
Or for the list monad to get a value of [a]:
instance Applicative [] where
{-# INLINE pure #-}
pure x = [x]
Or, as a more complex example, Aeson's parse monad to get a value of type Parser a:
instance Applicative Parser where
pure a = Parser $ \_path _kf ks -> ks a

Declare a function with no return value?

Can we create a function with void (i.e with no return value) in functional languages? Like Haskell or Scheme
In Haskell, you can write a whole family of functions that return () (unit), which is equivalent to void in C languages:
foo :: a -> ()
foo _ = ()
bar :: a -> b -> ()
bar _ _ = ()
You'll notice, however, that my implementations ignore their input, and simply return (), so they don't do anything.
You can call them like this:
Prelude> foo 42
()
Prelude> bar 42 "foo"
()
but this still doesn't accomplish anything.
You can, on the other hand, write functions that return IO (), like this:
main :: IO ()
main = putStrLn "Hello, world!"
but this is now impure. While this produces a side-effect, you could argue whether or not it's functional. At the very least, in Haskell, you can't call impure code from pure code (this is by design), so it doesn't compose.
What would the purpose be of such a function? Also if you think of a mathematical function (the base of functional programming) what would be the codomain of such a function?
So the short answer is no in haskell (i don't know enough scheme to give an informed answer regarding that).
The closest thing to void in java in haskell would be IO ()
In Racket you can:
Welcome to DrRacket, version 6.11 [3m].
Language: racket, with debugging; memory limit: 128 MB.
> (define (f) (displayln "hello") (void))
> (f)
hello
> (void? (f))
hello
#t
First, you need to remember that programming languages tend to use the word "function" in a sense that is different from the mathematical meaning. A programming-language function is just a named subroutine that may or may not produce a value that can be assigned or passed around.
Pascal made somewhat of a distinction between a "real" function and one that returned no value; the keyword procedure creates a subroutine that returns nothing, the keyword function has to return a value of some type.
C is an example that blurs this distinction; a function can have a return value of type void which in reality is type with exactly one value (although that value isn't actually represented in code; you have to pretend it exists). Every function with this return type always returns that same value. Python makes it a little more explicit; a function with no return statement or a return statement with no value actually returns the singleton value None.
Haskell has a similar type, (), which is inhabited by a single value with the same name. You can of course define a family of functions, one function per type, foo :: a -> () which ignores its argument and returns (). It doesn't have any practical value (as a pure language, a function can't do anything except return a value of its declared return type), but it does indeed exist. foo _ = ().
Incidentally, the functions of type a -> () establish () as the terminal object in the (pseudo)category Hask, which is necessary for establishing Hask as a cartesian-closed category, making it suitable for defining the semantics of Haskell.
However, Haskell also does have a type that contains no values, appropriately called Void:
data Void
Since Void is a valid type, you can imagine a type that contains functions from Void to any other type:
absurd :: Void -> a
However, since there are no values of type Void, you can't really call such a function. The unique function of type Void -> a can be defined as
absurd x = case x of {} -- There's nothing x *can* match
This is not to say that absurd has no use at all, just no practical use. Just as functions of type a -> () define () as the terminal object in Hask, absurd defines Void as the initial object in Hask.
(The latter half of this answer is a (bad) synopsis of information found in Bartosz Milewski's fantastic series of posts Category Theory for Programmers.)
In Haskell the only thing a function does is to return a value.
If a function doesn't return anything, then what the heck does it actually do?
You're probably thinking about something like a print "function", which prints something out and returns nothing. But that's not a mathematical function, that's an action. Haskell models those in a completely different way (i.e., monads). If you want to know what that is, there's elevanty billion discussions about it here on Stack Overflow, and littered across the face of the Internet.

Is print in Haskell a pure function?

Is print in Haskell a pure function; why or why not? I'm thinking it's not, because it does not always return the same value as pure functions should.
A value of type IO Int is not really an Int. It's more like a piece of paper which reads "hey Haskell runtime, please produce an Int value in such and such way". The piece of paper is inert and remains the same, even if the Ints eventually produced by the runtime are different.
You send the piece of paper to the runtime by assigning it to main. If the IO action never comes in the way of main and instead languishes inside some container, it will never get executed.
Functions that return IO actions are pure like the others. They always return the same piece of paper. What the runtime does with those instructions is another matter.
If they weren't pure, we would have to think twice before changing
foo :: (Int -> IO Int) -> IO Int
foo f = liftA2 (+) (f 0) (f 0)
to:
foo :: (Int -> IO Int) -> IO Int
foo f = let x = f 0 in liftA2 (+) x x
Yes, print is a pure function. The value it returns has type IO (), which you can think of as a bunch of code that outputs the string you passed in. For each string you pass in, it always returns the same code.
If you just read the Tag of pure-function (A function that always evaluates to the same result value given the same argument value(s) and that does not cause any semantically observable side effect or output, such as mutation of mutable objects or output to I/O devices.) and then Think in the type of print:
putStrLn :: String -> IO ()
You will find a trick there, it always returns IO (), so... No, it produces effects. So in terms of Referential Transparency is not pure
For example, getLine returns IO String but it is also a pure function. (#interjay contribution), What I'm trying to say, is that the answer depends very close of the question:
On matter of value, IO () will always be the same IO () value for the same input.
And
On matter of execution, it is not pure because the execution of that
IO () could have side effects (put an string in the screen, in this
case looks so innocent, but some IO could lunch nuclear bombs, and
then return the Int 42)
You could understand better with the nice approach of #Ben here:
"There are several ways to explain how you're "purely" manipulating
the real world. One is to say that IO is just like a state monad, only
the state being threaded through is the entire world outside your
program;= (so your Stuff -> IO DBThing function really has an extra
hidden argument that receives the world, and actually returns a
DBThing along with another world; it's always called with different
worlds, and that's why it can return different DBThing values even
when called with the same Stuff). Another explanation is that an IO
DBThing value is itself an imperative program; your Haskell program is
a totally pure function doing no IO, which returns an impure program
that does IO, and the Haskell runtime system (impurely) executes the
program it returns."
And #Erik Allik:
So Haskell functions that return values of type IO a, are actually not
the functions that are being executed at runtime — what gets executed
is the IO a value itself. So these functions actually are pure but
their return values represent non-pure computations.
You can found them here Understanding pure functions in Haskell with IO

Haskell - Function which returns a different value each time it iterates

Say that I have a function:
doesAThing :: Int -> ChangeState
For the purpose of this question it's not especially important what ChangeState is, only that doesAThing needs to take an Int as a parameter and that doesAThing iterates infinitely.
What I want to do is take such a function:
addNum :: [Int] -> Int
addNum [n] = foldl (+) 0 ([n] ++ [n + 1])
and use it for doesAThing. Currently, the function works fine, however it doesn't do what I want it to do - it always returns the same number. The idea is that each time doesAThing iterates, addNum takes whatever its previous output was and uses that as addNum's parameter. I.e. :
First iteration: say that n was set at 0. addNum returns 1 (0 + 0 + 1) and doesAThing uses that to modify ChangeState.
Second iteration: now addNum takes 1 as its parameter, so that it returns 3 (0 + 1 + 2) and doesAThing uses that to modify ChangeState.
Third iteration: now addNum takes 3 as its parameter, returns 7 (0 + 3 + 4) and doesAThing uses 7 to modify ChangeState.
Etc.
Apologies if this is a really noobish question, self-teaching yourself Haskell can be hard sometimes.
If you want to change something, that means you need mutable state. There are two options. First, you can make current state one of the arguments of your function, and the new state — part of a result. Like addNum :: [Int] -> ([Int], Int). There is a State monad that helps with that, giving an illusion that there actually is some mutable state.
Secondly, you can store your state in an IORef and make your function use IO monad, like addNum :: IORef [Int] -> IO Int. That way you can actually modify the state kept in the IORef. There are other monads that allow the same thing, like ST, which is great if your mutable state is used only locally, or STM, which helps if your application is highly concurrent.
I would strongly recommend the first option though. Don't use IO (or other imperative things) until you absolutely need it.
You have encountered a situations where a programmer who is comfortable with Haskell would likely turn to monads. In particular the state monad, for which there are a few reasonable tutorials online:
https://acm.wustl.edu/functional/state-monad.php
http://brandon.si/code/the-state-monad-a-tutorial-for-the-confused/
https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/12-State-Monad
I didn't quite understand the "addNum" operation you are trying to describe, and I think there's some flaws with your attempts to define it. For example, the fact that your code always expects a list of exactly one element suggests that there shouldn't be a list or a foldl at all—just take n as an argument and add.
But from your description, I think the following approximates it as best as I can. (This won't be understandable without studying monads and the state monad a little bit, but hopefully it gives you an example to work with in conjunction with other materials.)
import Control.Monad.State
-- Add the previous `addNum` result to the argument.
addNum :: Int -> State Int Int
addNum n = do
-- Precondition: the previous call to `addNum` used `put`
-- (a few lines below here) to record its result as the
-- implicit state for the `State` monad.
previous <- get
let newResult = previous + n
-- Here we fulfill the precondition above.
put newResult
return newResult
The idea of the State monad is that you have get and put actions such that executing get retrieves the value that was most recently given as argument to put. To actually use addNum you need to do it within the context of a call to a function like evalState :: State s a -> s -> a, which forces you to specify the initial state that will be seen by the very first get in the very first use of addNum.
So, for example, here we use the traverse function to chain calls to addNum on consecutive elements of the list [1..10]. Each call to addNum for each list element will get the newResult value that was put by the call for the previous element. And the 0 argument to evalState means that the very first addNum call gets a 0:
>>> evalState (traverse addNum [1..10]) 0
[1,3,6,10,15,21,28,36,45,55]
If this feels overwhelming, well, for better or worse that's how Haskell feels at first. Keep at it and build up slowly to examples like this one.
What you want is impossible in Haskell, for good reason, see below.
There is a way to iterate over a function, however, by feeding it its own output in the next iteration.
Here is an example:
iterate (\c -> c + 2) 0
This creates the infinite list
[0,2,4,6,....]
Haskell is a pure language, and this means that a function can only access its arguments, constants, other functions and nothing else. Esqecially, there is no hidden state a function can access. Therefore, with the same input, a Haskell function will compute the same output all times.

Can I declare a NULL value in Haskell?

Just curious, seems when declaring a name, we always specify some valid values, like let a = 3. Question is, in imperative languages include c/java there's always a keyword of "null". Does Haskell has similar thing? When could a function object be null?
There is a “null” value that you can use for variables of any type. It's called ⟂ (pronounced bottom). We don't need a keyword to produce bottom values; actually ⟂ is the value of any computation which doesn't terminate. For instance,
bottom = let x = x in x -- or simply `bottom = bottom`
will infinitely loop. It's obviously not a good idea to do this deliberately, however you can use undefined as a “standard bottom value”. It's perhaps the closest thing Haskell has to Java's null keyword.
But you definitely shouldn't/can't use this for most of the applications where Java programmers would grab for null.
Since everything in Haskell is immutable, a value that's undefined will always stay undefined. It's not possible to use this as a “hold on a second, I'll define it later” indication†.
It's not possible to check whether a value is bottom or not. For rather deep theoretical reasons, in fact. So you can't use this for values that may or may not be defined.
And you know what? It's really good that Haskell does't allow this! In Java, you constantly need to be wary that values might be null. In Haskell, if a value is bottom than something is plain broken, but this will never be part of intended behaviour / something you might need to check for. If for some value it's intended that it might not be defined, then you must always make this explicit by wrapping the type in a Maybe. By doing this, you make sure that anybody trying to use the value must first check whether it's there. Not possible to forget this and run into a null-reference exception at runtime!
And because Haskell is so good at handling variant types, checking the contents of a Maybe-wrapped value is really not too cumbersome. You can just do it explicitly with pattern matching,
quun :: Int -> String
quun i = case computationWhichMayFail i of
Just j -> show j
Nothing -> "blearg, failed"
computationWhichMayFail :: Int -> Maybe Int
or you can use the fact that Maybe is a functor. Indeed it is an instance of almost every specific functor class: Functor, Applicative, Alternative, Foldable, Traversable, Monad, MonadPlus. It also lifts semigroups to monoids.
Dᴏɴ'ᴛ Pᴀɴɪᴄ now,
you don't need to know what the heck these things are. But when you've learned what they do, you will be able to write very concise code that automagically handles missing values always in the right way, with zero risk of missing a check.
†Because Haskell is lazy, you generally don't need to defer any calculations to be done later. The compiler will automatically see to it that the computation is done when it's necessary, and no sooner.
There is no null in Haskell. What you want is the Maybe monad.
data Maybe a
= Just a
| Nothing
Nothing refers to classic null and Just contains a value.
You can then pattern match against it:
foo Nothing = Nothing
foo (Just a) = Just (a * 10)
Or with case syntax:
let m = Just 10
in case m of
Just v -> print v
Nothing -> putStrLn "Sorry, there's no value. :("
Or use the supperior functionality provided by the typeclass instances for Functor, Applicative, Alternative, Monad, MonadPlus and Foldable.
This could then look like this:
foo :: Maybe Int -> Maybe Int -> Maybe Int
foo x y = do
a <- x
b <- y
return $ a + b
You can even use the more general signature:
foo :: (Monad m, Num a) => m a -> m a -> m a
Which makes this function work for ANY data type that is capable of the functionality provided by Monad. So you can use foo with (Num a) => Maybe a, (Num a) => [a], (Num a) => Either e a and so on.
Haskell does not have "null". This is a design feature. It completely prevents any possibility of your code crashing due to a null-pointer exception.
If you look at code written in an imperative language, 99% of the code expects stuff to never be null, and will malfunction catastrophically if you give it null. But then 1% of the code does expect nulls, and uses this feature to specify optional arguments or whatever. But you can't easily tell, by looking at the code, which parts are expecting nulls as legal arguments, and which parts aren't. Hopefully it's documented — but don't hold your breath!
In Haskell, there is no null. If that argument is declared as Customer, then there must be an actual, real Customer there. You can't just pass in a null (intentionally or by mistake). So the 99% of the code that is expecting a real Customer will always work.
But what about the other 1%? Well, for that we have Maybe. But it's an explicit thing; you have to explicitly say "this value is optional". And you have to explicitly check when you use it. You cannot "forget" to check; it won't compile.
So yes, there is no "null", but there is Maybe which is kinda similar, but safer.
Not in Haskell (or in many other FP languages). If you have some expression of some type T, its evaluation will give a value of type T, with the following exceptions:
infinite recursion may make the program "loop forever" and failing to return anything
let f n = f (n+1) in f 0
runtime errors can abort the program early, e.g.:
division by zero, square root of negative, and other numerical errors
head [], fromJust Nothing, and other partial functions used on invalid inputs
explicit calls to undefined, error "message", or other exception-throwing primitives
Note that even if the above cases might be regarded as "special" values called "bottoms" (the name comes from domain theory), you can not test against these values at runtime, in general. So, these are not at all the same thing as Java's null. More precisely, you can't write things like
-- assume f :: Int -> Int
if (f 5) is a division-by-zero or infinite recursion
then 12
else 4
Some exceptional values can be caught in the IO monad, but forget about that -- exceptions in Haskell are not idiomatic, and roughly only used for IO errors.
If you want an exceptional value which can be tested at run-time, use the Maybe a type, as #bash0r already suggested. This type is similar to Scala's Option[A] or Java's not-so-much-used Optional<A>.
The value is having both a type T and type Maybe T is to be able to precisely identify which functions always succeed, and which ones can fail. In Haskell the following is frowned upon, for instance:
-- Finds a value in a list. Returns -1 if not present.
findIndex :: Eq a => [a] -> a -> Int
Instead this is preferred:
-- Finds a value in a list. Returns Nothing if not present.
findIndex :: Eq a => [a] -> a -> Maybe Int
The result of the latter is less convenient than the one of the former, since the Int must be unwrapped at every call. This is good, since in this way each user of the function is prevented to simply "ignore" the not-present case, and write buggy code.

Resources