Haskell: type versus pattern matching - haskell

I´m a second-year under-graduate student and have just started learning Haskell. My problem is regarding type-handling versus pattern-matching. I have defined a type Car which contains different parameters and the specification if the car´s gearbox is a stick or automatic, like so:
data Car = Stick [Char] Integer | Automatic [Char] Integer
This solution has worked brilliantly for pattern-matching cars so far, but now I need a function which takes a car as input and returns the Stick/Automatic information, and don´t want to have to change the Stick/Automatic handling to string-handling. I don´t know what return-type to specify for that function. What would that return-type be?

You could introduce a new type for the type of tranmission:
data TransmissionType = Stick | Automatic
and change your definition of car to:
data Car = Car TransmissionType [Char] Integer
You can then add a function to get the type
transmissionType :: Car -> TransmissionType
transmissionType (Car t _ _) = t
Since you only have one constructor you could use records instead:
data Car = Car {
transmissionType :: TransmissionType,
field1 :: [Char],
field2 :: Integer
}
If you don't want to change your definition you could add a function
isManual :: Car -> Bool
isManual (Stick _ _) = True
isManual (Automatic _ _) = False

In Haskell, the return-type you write in the code (in the declaration) is not for the compiler. It is for you. The compiler figures out what type your function is, then checks whether you got it right.
What I suggest you do, is to make the function you need. ( I haven't really figured out what that should be.) After you have done that, open ghci (the compiler, interactive), load your code. then use :t to have the compiler figure out what type it is. Then you can write it in the declaration if you want to. It is not necessary.
$ ghci
prelude> :load yourfile
prelude> :t yourfunction

Related

What is the type keyword in Haskell

Stumbled on the type keyword in Haskell:
type Item = String
but not sure what it does, how to use it or how it is different from data. The online google search has been of no help.
I tried implementing it in a code like this:
import System.IO
main = do
putStrLn "Hello, what's your name?"
type Item = String
let test :: Item
test = "chris"
putStrLn test
but I got an error
parse error on input ‘type’
Please in a lay man's term what is type and how can it be used and how is it different from data?
It is a type alias. It means that you can use Item in your code where you can use String instead.
A type alias is often used when you for example want to give a name to more complex types. For example:
import Data.Map(Map)
type Dictionary = Map String String
here you thus can use Dictionary instead of each time writing Map String String.
It is furthermore often used if you want to specify that you are working with Items, the alias is then used in the type signature and in the documentation, which is often better than writing String.
It is also used if you do not yet know what type you will use for a specific object. By using a type alias, you can the work with Item, and later if you change your made define a type for Item or make it an alias of another type. This makes it more convenient to change the types.
I tried implementing it in a code like this:
import System.IO
main = do
putStrLn "Hello, what's your name?"
type Item = String
let test :: Item
test = "chris"
putStrLn test
A type alias is defined at the top level, so not in a do block, that would make a type definition locally scoped. While, like #moonGoose says, there are some proposals to make type definitions more locally scoped, currently it is not the case.
You can define the type alias like:
import System.IO
type Item = String
main = do
putStrLn "Hello, what's your name?"
let test :: Item
test = "chris"
putStrLn test
type A = B
means exactly the same as
typedef B A
in C or C++, and it behaves basically the same as simply
a = b
except that A and B are type-level entities, not value-level ones. For example
Prelude> type A = Int
Prelude> :i A
type A = Int -- Defined at <interactive>:1:1
Prelude> a = 37
Prelude> a
37
Because now A = Int, I can then use the type identifier A exactly everywhere I could also use Int directly:
Prelude> 37 :: Int
37
Prelude> 37 :: A
37
and even
Prelude> (37 :: Int) :: A
37
Note that there is no type conversion going on here, like you might have in other languages. Int and A are simply different names for the same type, so annotating with both is merely a tautology.
Contrast this with data (or newtype), which define a new, separate type which just happens to contain the, well, data of the specified type.
Prelude> data A' = A' { getA :: Int }
Prelude> (37 :: Int) :: A'
<interactive>:12:2: error:
• Couldn't match expected type ‘A'’ with actual type ‘Int’
• In the expression: (37 :: Int) :: A'
In an equation for ‘it’: it = (37 :: Int) :: A'

How does the :: operator syntax work in the context of bounded typeclass?

I'm learning Haskell and trying to understand the reasoning behind it's syntax design at the same time. Most of the syntax is beautiful.
But since :: normally is like a type annotation, How is it that this works:
Input: minBound::Int
Output: -2147483648
There is no separate operator: :: is a type annotation in that example. Perhaps the best way to understand this is to consider this code:
main = print (f minBound)
f :: Int -> Int
f = id
This also prints -2147483648. The use of minBound is inferred to be an Int because it is the parameter to f. Once the type has been inferred, the value for that type is known.
Now, back to:
main = print (minBound :: Int)
This works in the same way, except that minBound is known to be an Int because of the type annotation, rather than for some more complex reason. The :: isn't some binary operation; it just directs the compiler that the expression minBound has the type Int. Once again, since the type is known, the value can be determined from the type class.
:: still means "has type" in that example.
There are two ways you can use :: to write down type information. Type declarations, and inline type annotations. Presumably you've been used to seeing type declarations, as in:
plusOne :: Integer -> Integer
plusOne = (+1)
Here the plusOne :: Integer -> Integer line is a separate declaration about the identifier plusOne, informing the compiler what its type should be. It is then actually defined on the following line in another declaration.
The other way you can use :: is that you can embed type information in the middle of any expression. Any expression can be followed by :: and then a type, and it means the same thing as the expression on its own except with the additional constraint that it must have the given type. For example:
foo = ('a', 2) :: (Char, Integer)
bar = ('a', 2 :: Integer)
Note that for foo I attached the entire expression, so it is very little different from having used a separate foo :: (Char, Integer) declaration. bar is more interesting, since I gave a type annotation for just the 2 but used that within a larger expression (for the whole pair). 2 :: Integer is still an expression for the value 2; :: is not an operator that takes 2 as input and computes some result. Indeed if the 2 were already used in a context that requires it to be an Integer then the :: Integer annotation changes nothing at all. But because 2 is normally polymorphic in Haskell (it could fit into a context requiring an Integer, or a Double, or a Complex Float) the type annotation pins down that the type of this particular expression is Integer.
The use is that it avoids you having to restructure your code to have a separate declaration for the expression you want to attach a type to. To do that with my simple example would have required something like this:
two :: Integer
two = 2
baz = ('a', two)
Which adds a relatively large amount of extra code just to have something to attach :: Integer to. It also means when you're reading bar, you have to go read a whole separate definition to know what the second element of the pair is, instead of it being clearly stated right there.
So now we can answer your direct question. :: has no special or particular meaning with the Bounded type class or with minBound in particular. However it's useful with minBound (and other type class methods) because the whole point of type classes is to have overloaded names that do different things depending on the type. So selecting the type you want is useful!
minBound :: Int is just an expression using the value of minBound under the constraint that this particular time minBound is used as an Int, and so the value is -2147483648. As opposed to minBound :: Char which is '\NUL', or minBound :: Bool which is False.
None of those options mean anything different from using minBound where there was already some context requiring it to be an Int, or Char, or Bool; it's just a very quick and simple way of adding that context if there isn't one already.
It's worth being clear that both forms of :: are not operators as such. There's nothing terribly wrong with informally using the word operator for it, but be aware that "operator" has a specific meaning in Haskell; it refers to symbolic function names like +, *, &&, etc. Operators are first-class citizens of Haskell: we can bind them to variables1 and pass them around. For example I can do:
(|+|) = (+)
x = 1 |+| 2
But you cannot do this with ::. It is "hard-wired" into the language, just as the = symbol used for introducing definitions is, or the module Main ( main ) where syntax for module headers. As such there are lots of things that are true about Haskell operators that are not true about ::, so you need to be careful not to confuse yourself or others when you use the word "operator" informally to include ::.
1 Actually an operator is just a particular kind of variable name that is applied by writing it between two arguments instead of before them. The same function can be bound to operator and ordinary variables, even at the same time.
Just to add another example, with Monads you can play a little like this:
import Control.Monad
anyMonad :: (Monad m) => Int -> m Int
anyMonad x = (pure x) >>= (\x -> pure (x*x)) >>= (\x -> pure (x+2))
$> anyMonad 4 :: [Int]
=> [18]
$> anyMonad 4 :: Either a Int
=> Right 18
$> anyMonad 4 :: Maybe Int
=> Just 18
it's a generic example telling you that the functionality may change with the type, another example:

Redundancy regarding product types and tuples in Haskell

In Haskell you have product types and you have tuples.
You use tuples if you don't want to associate a dedicated type with the value, and you can use product types if you wish to do so.
However I feel there is redundancy in the notation of product types
data Foo = Foo (String, Int, Char)
data Bar = Bar String Int Char
Why are there both kinds of notations? Is there any case where you would prefer one the other?
I guess you can't use record notation when using tuples, but that's just a convenience problem. Another thing might be the notion of order in tuples, as opposed to product types, but I think that's just due to the naming of the functions fst and snd.
#chi's answer is about the technical differences in terms of Haskell's evaluation model. I hope to give you some insight into the philosophy of this sort of typed programming.
In category theory we generally work with objects "up to isomorphism". Your Bar is of course isomorphic to (String, Int, Char), so from a categorical perspective they're the same thing.
bar_tuple :: Iso' Bar (String, Int, Char)
bar_tuple = iso to from
where to (Bar s i c) = (s, i, c)
from (s, i, c) = Bar s i c
In some sense tuples are a Platonic form of product type, in that they have no meaning beyond being a collection of disparate values. All the other product types can be mapped to and from a plain old tuple.
So why not use tuples everywhere, when all Haskell types ultimately boil down to a sum of products? It's about communication. As Martin Fowler says,
Any fool can write code that a computer can understand. Good programmers write code that humans can understand.
Names are important! Writing down a custom product type like
data Customer = Customer { name :: String, address :: String }
imbues the type Customer with meaning to the person reading the code, unlike (String, String) which just means "two strings".
Custom types are particularly useful when you want to enforce invariants by hiding the representation of your data and using smart constructors:
newtype NonEmpty a = NonEmpty [a]
nonEmpty :: [a] -> Maybe (NonEmpty a)
nonEmpty [] = Nothing
nonEmpty xs = Just (NonEmpty xs)
Now, if you don't export the NonEmpty constructor, you can force people to go through the nonEmpty smart constructor. If someone hands you a NonEmpty value you may safely assume that it has at least one element.
You can of course represent Customer as a tuple under the hood and expose evocatively-named field accessors,
newtype Customer = Bar (String, String)
name, address :: Customer -> String
name (Customer (n, a)) = n
address (Customer (n, a)) = a
but this doesn't really buy you much, except that it's now cheaper to convert Customer to a tuple (if, say, you're writing performance-sensitive code that works with a tuple-oriented API).
If your code is intended to solve a particular problem - which of course is the whole point of writing code - it pays to not just solve the problem, but make it look like you've solved it too. Someone - maybe you in a couple of years - is going to have to read this code and understand it with no a priori knowledge of how it works. Custom types are a very important communication tool in this regard.
The type
data Foo = Foo (String, Int, Char)
represents a double-lifted tuple. It values comprise
undefined
Foo undefined
Foo (undefined, undefined, undefined)
etc.
This is usually troublesome. Because of this, it's rare to see such definitions in actual code. We either have plain data types
data Foo = Foo String Int Char
or newtypes
newtype Foo = Foo (String, Int, Char)
The newtype can be just as inconvenient to use, but at least it
does not double-lift the tuple: undefined and Foo undefined are now equal values.
The newtype also provides zero-cost conversion between a plain tuple and Foo, in both directions.
You can see such newtypes in use e.g. when the programmer needs a different instance for some type class, than the one already associated with the tuple. Or, perhaps, it is used in a "smart constructor" idiom.
I would not expect the pattern used in Foo to be frequent. There is slight difference in what the constructor acts like: Foo :: (String, Int, Char) -> Foo as opposed to Bar :: String -> Int -> Char -> Bar. Then Foo undefined and Foo (undefined, ..., ...) are strictly speaking different things, whereas you miss one level of undefinedness in Bar.

Why can't I use the type `Show a => [Something -> a]`?

I have a record type say
data Rec {
recNumber :: Int
, recName :: String
-- more fields of various types
}
And I want to write a toString function for Rec :
recToString :: Rec -> String
recToString r = intercalate "\t" $ map ($ r) fields
where fields = [show . recNumber, show . recName]
This works. fields has type [Rec -> String]. But I'm lazy and I would prefer writing
recToString r = intercalate "\t" $ map (\f -> show $ f r) fields
where fields = [recNumber, recName]
But this doesn't work. Intuitively I would say fields has type Show a => [Rec -> a] and this should be ok. But Haskell doesn't allow it.
I'd like to understand what is going on here. Would I be right if I said that in the first case I get a list of functions such that the 2 instances of show are actually not the same function, but Haskell is able to determine which is which at compile time (which is why it's ok).
[show . recNumber, show . recName]
^-- This is show in instance Show Number
^-- This is show in instance Show String
Whereas in the second case, I only have one literal use of show in the code, and that would have to refer to multiple instances, not determined at compile time ?
map (\f -> show $ f r) fields
^-- Must be both instances at the same time
Can someone help me understand this ? And also are there workarounds or type system expansions that allow this ?
The type signature doesn't say what you think it says.
This seems to be a common misunderstanding. Consider the function
foo :: Show a => Rec -> a
People frequently seem to think this means that "foo can return any type that it wants to, so long as that type supports Show". It doesn't.
What it actually means is that foo must be able to return any possible type, because the caller gets to choose what the return type should be.
A few moments' thought will reveal that foo actually cannot exist. There is no way to turn a Rec into any possible type that can ever exist. It can't be done.
People often try to do something like Show a => [a] to mean "a list of mixed types but they all have Show". That obviously doesn't work; this type actually means that the list elements can be any type, but they still have to be all the same.
What you're trying to do seems reasonable enough. Unfortunately, I think your first example is about as close as you can get. You could try using tuples and lenses to get around this. You could try using Template Haskell instead. But unless you've got a hell of a lot of fields, it's probably not even worth the effort.
The type you actually want is not:
Show a => [Rec -> a]
Any type declaration with unbound type variables has an implicit forall. The above is equivalent to:
forall a. Show a => [Rec -> a]
This isn't what you wan't, because the a must be specialized to a single type for the entire list. (By the caller, to any one type they choose, as MathematicalOrchid points out.) Because you want the a of each element in the list to be able to be instantiated differently... what you are actually seeking is an existential type.
[exists a. Show a => Rec -> a]
You are wishing for a form of subtyping that Haskell does not support very well. The above syntax is not supported at all by GHC. You can use newtypes to sort of accomplish this:
{-# LANGUAGE ExistentialQuantification #-}
newtype Showy = forall a. Show a => Showy a
fields :: [Rec -> Showy]
fields = [Showy . recNumber, Showy . recName]
But unfortunatley, that is just as tedious as converting directly to strings, isn't it?
I don't believe that lens is capable of getting around this particular weakness of the Haskell type system:
recToString :: Rec -> String
recToString r = intercalate "\t" $ toListOf (each . to fieldShown) fields
where fields = (recNumber, recName)
fieldShown f = show (f r)
-- error: Couldn't match type Int with [Char]
Suppose the fields do have the same type:
fields = [recNumber, recNumber]
Then it works, and Haskell figures out which show function instance to use at compile time; it doesn't have to look it up dynamically.
If you manually write out show each time, as in your original example, then Haskell can determine the correct instance for each call to show at compile time.
As for existentials... it depends on implementation, but presumably, the compiler cannot determine which instance to use statically, so a dynamic lookup will be used instead.
I'd like to suggest something very simple instead:
recToString r = intercalate "\t" [s recNumber, s recName]
where s f = show (f r)
All the elements of a list in Haskell must have the same type, so a list containing one Int and one String simply cannot exist. It is possible to get around this in GHC using existential types, but you probably shouldn't (this use of existentials is widely considered an anti-pattern, and it doesn't tend to perform terribly well). Another option would be to switch from a list to a tuple, and use some weird stuff from the lens package to map over both parts. It might even work.

How to define a class that allows uniform access to different records in Haskell?

I have two records that both have a field I want to extract for display. How do I arrange things so they can be manipulated with the same functions? Since they have different fields (in this case firstName and buildingName) that are their name fields, they each need some "adapter" code to map firstName to name. Here is what I have so far:
class Nameable a where
name :: a -> String
data Human = Human {
firstName :: String
}
data Building = Building {
buildingName :: String
}
instance Nameable Human where
name x = firstName x
instance Nameable Building where
-- I think the x is redundant here, i.e the following should work:
-- name = buildingName
name x = buildingName x
main :: IO ()
main = do
putStr $ show (map name items)
where
items :: (Nameable a) => [a]
items = [ Human{firstName = "Don"}
-- Ideally I want the next line in the array too, but that gives an
-- obvious type error at the moment.
--, Building{buildingName = "Empire State"}
]
This does not compile:
TypeTest.hs:23:14:
Couldn't match expected type `a' against inferred type `Human'
`a' is a rigid type variable bound by
the type signature for `items' at TypeTest.hs:22:23
In the expression: Human {firstName = "Don"}
In the expression: [Human {firstName = "Don"}]
In the definition of `items': items = [Human {firstName = "Don"}]
I would have expected the instance Nameable Human section would make this work. Can someone explain what I am doing wrong, and for bonus points what "concept" I am trying to get working, since I'm having trouble knowing what to search for.
This question feels similar, but I couldn't figure out the connection with my problem.
Consider the type of items:
items :: (Nameable a) => [a]
It's saying that for any Nameable type, items will give me a list of that type. It does not say that items is a list that may contain different Nameable types, as you might think. You want something like items :: [exists a. Nameable a => a], except that you'll need to introduce a wrapper type and use forall instead. (See: Existential type)
{-# LANGUAGE ExistentialQuantification #-}
data SomeNameable = forall a. Nameable a => SomeNameable a
[...]
items :: [SomeNameable]
items = [ SomeNameable $ Human {firstName = "Don"},
SomeNameable $ Building {buildingName = "Empire State"} ]
The quantifier in the data constructor of SomeNameable basically allows it to forget everything about exactly which a is used, except that it is Nameable. Therefore, you will only be allowed to use functions from the Nameable class on the elements.
To make this nicer to use, you can make an instance for the wrapper:
instance Nameable (SomeNameable a) where
name (SomeNameable x) = name x
Now you can use it like this:
Main> map name items
["Don", "Empire State"]
Everybody is reaching for either existential quantification or algebraic data types. But these are both overkill (well depending on your needs, ADTs might not be).
The first thing to note is that Haskell has no downcasting. That is, if you use the following existential:
data SomeNameable = forall a. Nameable a => SomeNameable a
then when you create an object
foo :: SomeNameable
foo = SomeNameable $ Human { firstName = "John" }
the information about which concrete type the object was made with (here Human) is forever lost. The only things we know are: it is some type a, and there is a Nameable a instance.
What is it possible to do with such a pair? Well, you can get the name of the a you have, and... that's it. That's all there is to it. In fact, there is an isomorphism. I will make a new data type so you can see how this isomorphism arises in cases when all your concrete objects have more structure than the class.
data ProtoNameable = ProtoNameable {
-- one field for each typeclass method
protoName :: String
}
instance Nameable ProtoNameable where
name = protoName
toProto :: SomeNameable -> ProtoNameable
toProto (SomeNameable x) = ProtoNameable { protoName = name x }
fromProto :: ProtoNameable -> SomeNameable
fromProto = SomeNameable
As we can see, this fancy existential type SomeNameable has the same structure and information as ProtoNameable, which is isomorphic to String, so when you are using this lofty concept SomeNameable, you're really just saying String in a convoluted way. So why not just say String?
Your items definition has exactly the same information as this definition:
items = [ "Don", "Empire State" ]
I should add a few notes about this "protoization": it is only as straightforward as this when the typeclass you are existentially quantifying over has a certain structure: namely when it looks like an OO class.
class Foo a where
method1 :: ... -> a -> ...
method2 :: ... -> a -> ...
...
That is, each method only uses a once as an argument. If you have something like Num
class Num a where
(+) :: a -> a -> a
...
which uses a in multiple argument positions, or as a result, then eliminating the existential is not as easy, but still possible. However my recommendation to do this changes from a frustration to a subtle context-dependent choice, because of the complexity and distant relationship of the two representations. However, every time I have seen existentials used in practice it is with the Foo kind of tyepclass, where it only adds needless complexity, so I quite emphatically consider it an antipattern. In most of these cases I recommend eliminating the entire class from your codebase and exclusively using the protoized type (after you give it a good name).
Also, if you do need to downcast, then existentials aren't your man. You can either use an algebraic data type, as others people have answered, or you can use Data.Dynamic (which is basically an existential over Typeable. But don't do that; a Haskell programmer resorting to Dynamic is ungentlemanlike. An ADT is the way to go, where you characterize all the possible types it could be in one place (which is necessary so that the functions that do the "downcasting" know that they handle all possible cases).
I like #hammar's answer, and you should also check out this article which provides another example.
But, you might want to think differently about your types. The boxing of Nameable into the SomeNameable data type usually makes me start thinking about whether a union type for the specific case is meaningful.
data Entity = H Human | B Building
instance Nameable Entity where ...
items = [H (Human "Don"), B (Building "Town Hall")]
I'm not sure why you want to use the same function for
getting the name of a Human and the name of a Building.
If their names are used in fundamentally different ways,
except maybe for simple things like printing them,
then you probably want two
different functions for that. The type system
will automatically guide you to choose the right function
to use in each situation.
But if having a name is something significant about the
whole purpose of your program, and a Human and a Building
are really pretty much the same thing in that respect as far as your program
is concerned, then you would define their type together:
data NameableThing =
Human { name :: String } |
Building { name :: String }
That gives you a polymorphic function name that works for
whatever particular flavor of NameableThing you happen to have,
without needing to get into type classes.
Usually you would use a type class for a different kind of situation:
if you have some kind of non-trivial operation that has the same purpose
but a different implementation for several different types.
Even then, it's often better to use some other approach instead, like
passing a function as a parameter (a "higher order function", or "HOF").
Haskell type classes are a beautiful and powerful tool, but they are totally
different than what is called a "class" in object-oriented languages,
and they are used far less often.
And I certainly don't recommend complicating your program by using an advanced
extension to Haskell like Existential Qualification just to fit into
an object-oriented design pattern.
You can try to use Existentially Quanitified types and do it like this:
data T = forall a. Nameable a => MkT a
items = [MkT (Human "bla"), MkT (Building "bla")]
I've just had a look at the code that this question is abstracting from. For this, I would recommend merging the Task and RecurringTaskDefinition types:
data Task
= Once
{ name :: String
, scheduled :: Maybe Day
, category :: TaskCategory
}
| Recurring
{ name :: String
, nextOccurrence :: Day
, frequency :: RecurFrequency
}
type ProgramData = [Task] -- don't even need a new data type for this any more
Then, the name function works just fine on either type, and the functions you were complaining about like deleteTask and deleteRecurring don't even need to exist -- you can just use the standard delete function as usual.

Resources