Iterating over two zipped files (python's mapping) - zip

The following is advised by this answer (as big files do not allow zip(file1, file2)):
from itertools import izip
for i, j in izip(file1, file2):
However, this is not available in python 3.3 for some reason.
What is the alternative in Python 3.3 when one needs to iterate over 2 files simultaneously?

in python 3, izip does no longer exists and zip returns an iterator, like izip used to do. Same thing apply to range/xrange.
as a reference:
https://docs.python.org/release/3.0.1/whatsnew/3.0.html#views-and-iterators-instead-of-lists
https://docs.python.org/release/3.0.1/whatsnew/3.0.html#overview-of-syntax-changes

Related

how to transfer data from a python file and use it inside a different python file?

hello every one am still new to the world of python so excuse my noob question here :
supposing that i have a python file named calculator1.py
which gives me the value of i as the following example
j=0
i=0
while j<=5:
if type(j/2)==int:
i+=1
j+=1
after that i will need the value of i to use it in a separate python file named calculator2.py
so how to extract the value of i from one python file and insert it into a different python file?
The most obvious solution is to import calculator1.py in calculater2.py and call it from there.
The other solution is to serialize the data and write it to a file which you then can read from the other module. You can use for example pickle or json.
See for example: https://docs.python.org/3/library/pickle.html
You can import the variable by in your other python file (calculator2.py).
So
from calculator1 import i

Python if statement and assignment

I am working with BeautifulSoup in Python to parse some XML. I find myself having to write code that looks like this
for document in soup.find_all('document'):
if document.find('doc-number'):
doc_number = document.find('doc-number').string
# More similar if statements further down
I find writing the document.find('doc-number') twice: once in the if statement and once within the if block rather cumbersome and leading to long lines of code.
Is there a way I can make the code shorter and more Pythonic ?
This is Python 3.6
From python 3.8,
for document in soup.find_all('document'):
if (doc := document.find('doc-number')) is not None:
doc_number = doc.string
These are called assignment expressions.
https://www.python.org/dev/peps/pep-0572/
Edit: You just updated the python version to be 3.6, For versions less than 3.8, #jonrsharpe comment is the better answer

Loading .npz with Python 3.5 always crashes

In this simple tutorial written in Python 2.7, they have a line loading the numpy array.
train_data = np.load(open('../musicnet.npz','rb'))
Then, they get the data by calling different keys
X,Y = train_data['2494']
Everything works well in python 2.7
Data type of train_data is numpy.lib.npyio.NpzFile
My problem
However, whenever I try to do the same in Python 3.5, most of the lines work fine, except when it comes to the line of X,Y = train_data['2494'], it just freezes there forever. I would like to use Python 3.5 because my other projects are written in python 3.5.
How to rewrite this line so that it runs with Python 3.5?
Error Message
I finally managed to get the error message in terminal
It freezes there because there's tons of output right after the error message, my jupyter notebook just cannot handle that much information.
Solution
Change the encoding to 'bytes'
train_data = np.load('../musicnet.npz', encoding='bytes')
Then everything works fine.
You first said things crashed, now you say it freezes when trying to access a specific array. numpy has the same syntax in 3.5 compared to 2.7. You shouldn't have to rewrite anything.
np.load does have a couple of parameters that deal with differences between Py2 and Py3. But I'm not sure these are an issue for you.
fix_imports : bool, optional
Only useful when loading Python 2 generated pickled files on Python 3,
which includes npy/npz files containing object arrays. If `fix_imports`
is True, pickle will try to map the old Python 2 names to the new names
used in Python 3.
encoding : str, optional
What encoding to use when reading Python 2 strings. Only useful when
loading Python 2 generated pickled files in Python 3, which includes
npy/npz files containing object arrays. Values other than 'latin1',
'ASCII', and 'bytes' are not allowed, as they can corrupt numerical
data. Default: 'ASCII'
Try
print(list(train_data.keys()))
This should show the array names that were saved to the zip archive. Do they match the names in the Py2 load? Do they include the '2494' name?
A couple of things are unusual about:
X,Y = train_data['2494']
Naming an array in the zip archive by a string number, and unpacking the load into two variables.
Do you know anything about how this was savez? What was saved?
Another question - are you loading this file from the same machine that Py2 worked on? Or has the file been transferred from another machine, and possibly corrupted?
As those parameters indicate, there are differences in the pickle code between Py2 and Py3. If the original save included object dtype arrays, or non-array objects, then they will be pickled and there might be incompatibilities in the pickle versions.
Try this,
with np.load('../musicnet.npz') as train_data:
X,Y = train_data['2494']
There are 2 ways out in my point of view:
re-edit your code
train_data = np.load(open('../musicnet.npz','rb'))
to
train_data = np.load(open('../musicnet.npz','r'))
Because the mode of r/rb in python2.7 / 3.5 is a difference in your situation.
Using the default debugger to pointing the significant error. (Usually, work on my experience)

How do I save a scipy distribution in a list or array to call? [duplicate]

I wonder, how to save and load numpy.array data properly. Currently I'm using the numpy.savetxt() method. For example, if I got an array markers, which looks like this:
I try to save it by the use of:
numpy.savetxt('markers.txt', markers)
In other script I try to open previously saved file:
markers = np.fromfile("markers.txt")
And that's what I get...
Saved data first looks like this:
0.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
0.000000000000000000e+00
But when I save just loaded data by the use of the same method, ie. numpy.savetxt() it looks like this:
1.398043286095131769e-76
1.398043286095288860e-76
1.396426376485745879e-76
1.398043286055061908e-76
1.398043286095288860e-76
1.182950697433698368e-76
1.398043275797188953e-76
1.398043286095288860e-76
1.210894289234927752e-99
1.398040649781712473e-76
What am I doing wrong? PS there are no other "backstage" operation which I perform. Just saving and loading, and that's what I get. Thank you in advance.
The most reliable way I have found to do this is to use np.savetxt with np.loadtxt and not np.fromfile which is better suited to binary files written with tofile. The np.fromfile and np.tofile methods write and read binary files whereas np.savetxt writes a text file.
So, for example:
a = np.array([1, 2, 3, 4])
np.savetxt('test1.txt', a, fmt='%d')
b = np.loadtxt('test1.txt', dtype=int)
a == b
# array([ True, True, True, True], dtype=bool)
Or:
a.tofile('test2.dat')
c = np.fromfile('test2.dat', dtype=int)
c == a
# array([ True, True, True, True], dtype=bool)
I use the former method even if it is slower and creates bigger files (sometimes): the binary format can be platform dependent (for example, the file format depends on the endianness of your system).
There is a platform independent format for NumPy arrays, which can be saved and read with np.save and np.load:
np.save('test3.npy', a) # .npy extension is added if not given
d = np.load('test3.npy')
a == d
# array([ True, True, True, True], dtype=bool)
np.save('data.npy', num_arr) # save
new_num_arr = np.load('data.npy') # load
The short answer is: you should use np.save and np.load.
The advantage of using these functions is that they are made by the developers of the Numpy library and they already work (plus are likely optimized nicely for processing speed).
For example:
import numpy as np
from pathlib import Path
path = Path('~/data/tmp/').expanduser()
path.mkdir(parents=True, exist_ok=True)
lb,ub = -1,1
num_samples = 5
x = np.random.uniform(low=lb,high=ub,size=(1,num_samples))
y = x**2 + x + 2
np.save(path/'x', x)
np.save(path/'y', y)
x_loaded = np.load(path/'x.npy')
y_load = np.load(path/'y.npy')
print(x is x_loaded) # False
print(x == x_loaded) # [[ True True True True True]]
Expanded answer:
In the end it really depends in your needs because you can also save it in a human-readable format (see Dump a NumPy array into a csv file) or even with other libraries if your files are extremely large (see best way to preserve numpy arrays on disk for an expanded discussion).
However, (making an expansion since you use the word "properly" in your question) I still think using the numpy function out of the box (and most code!) most likely satisfy most user needs. The most important reason is that it already works. Trying to use something else for any other reason might take you on an unexpectedly LONG rabbit hole to figure out why it doesn't work and force it work.
Take for example trying to save it with pickle. I tried that just for fun and it took me at least 30 minutes to realize that pickle wouldn't save my stuff unless I opened & read the file in bytes mode with wb. It took time to google the problem, test potential solutions, understand the error message, etc... It's a small detail, but the fact that it already required me to open a file complicated things in unexpected ways. To add to that, it required me to re-read this (which btw is sort of confusing): Difference between modes a, a+, w, w+, and r+ in built-in open function?.
So if there is an interface that meets your needs, use it unless you have a (very) good reason (e.g. compatibility with matlab or for some reason your really want to read the file and printing in Python really doesn't meet your needs, which might be questionable). Furthermore, most likely if you need to optimize it, you'll find out later down the line (rather than spending ages debugging useless stuff like opening a simple Numpy file).
So use the interface/numpy provide. It might not be perfect, but it's most likely fine, especially for a library that's been around as long as Numpy.
I already spent the saving and loading data with numpy in a bunch of way so have fun with it. Hope this helps!
import numpy as np
import pickle
from pathlib import Path
path = Path('~/data/tmp/').expanduser()
path.mkdir(parents=True, exist_ok=True)
lb,ub = -1,1
num_samples = 5
x = np.random.uniform(low=lb,high=ub,size=(1,num_samples))
y = x**2 + x + 2
# using save (to npy), savez (to npz)
np.save(path/'x', x)
np.save(path/'y', y)
np.savez(path/'db', x=x, y=y)
with open(path/'db.pkl', 'wb') as db_file:
pickle.dump(obj={'x':x, 'y':y}, file=db_file)
## using loading npy, npz files
x_loaded = np.load(path/'x.npy')
y_load = np.load(path/'y.npy')
db = np.load(path/'db.npz')
with open(path/'db.pkl', 'rb') as db_file:
db_pkl = pickle.load(db_file)
print(x is x_loaded)
print(x == x_loaded)
print(x == db['x'])
print(x == db_pkl['x'])
print('done')
Some comments on what I learned:
np.save as expected, this already compresses it well (see https://stackoverflow.com/a/55750128/1601580), works out of the box without any file opening. Clean. Easy. Efficient. Use it.
np.savez uses a uncompressed format (see docs) Save several arrays into a single file in uncompressed .npz format. If you decide to use this (you were warned about going away from the standard solution so expect bugs!) you might discover that you need to use argument names to save it, unless you want to use the default names. So don't use this if the first already works (or any works use that!)
Pickle also allows for arbitrary code execution. Some people might not want to use this for security reasons.
Human-readable files are expensive to make etc. Probably not worth it.
There is something called hdf5 for large files. Cool! https://stackoverflow.com/a/9619713/1601580
Note that this is not an exhaustive answer. But for other resources check this:
For pickle (guess the top answer is don't use pickle, use np.save): Save Numpy Array using Pickle
For large files (great answer! compares storage size, loading save and more!): https://stackoverflow.com/a/41425878/1601580
For matlab (we have to accept matlab has some freakin' nice plots!): "Converting" Numpy arrays to Matlab and vice versa
For saving in human-readable format: Dump a NumPy array into a csv file
np.fromfile() has a sep= keyword argument:
Separator between items if file is a text file. Empty (“”) separator means the file should be treated as binary. Spaces (” ”) in the separator match zero or more whitespace characters. A separator consisting only of spaces must match at least one whitespace.
The default value of sep="" means that np.fromfile() tries to read it as a binary file rather than a space-separated text file, so you get nonsense values back. If you use np.fromfile('markers.txt', sep=" ") you will get the result you are looking for.
However, as others have pointed out, np.loadtxt() is the preferred way to convert text files to numpy arrays, and unless the file needs to be human-readable it is usually better to use binary formats instead (e.g. np.load()/np.save()).

Can't locate collections module for python 3

I'm new to Python 3 and following a tutorial which uses a package called collections. While there is an import statement(import collections)in the program, and the program works without error I am confused. I can't locate the package, and it is not listed as one of the downloadable packages. Is it part of python 2/3, and if so where would I see it listed?
I guess it comes with Python 3. You can see the location of an imported module with __path__, like this:
>>> import collections
>>> collections.__path__
['/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/collections']
Here's some relevant Python documentation:
https://docs.python.org/3.5/tutorial/modules.html#packages-in-multiple-directories
https://docs.python.org/3.5/reference/import.html#path

Resources