How can I transparently adjust hardcoded filesystem paths? - linux

I need to execute a compiled program which hardcodes various filesystem paths, with different values for those paths. For practical reasons, adjusting the source code of the program and recompiling it is not an option. Additionally, is is not acceptable to replace the hardcoded files with symlinks, or change the hardcoded files in any other way.
I can only think of two solutions: LD_PRELOAD hooks and patching the binary. The former seems easier and more reliable. Is there any better solution, or perhaps some existing software aiming to solve this problem?
P.S. I am aware I'm speaking of horrible hacks. The hardcoded software in question is widely distributed on Linux distributions, but it appears completely unmaintained, and I don't see any chance of getting a patch in, let alone having it hit distros, in the time I find acceptable.

Related

How to inspect Haskell bytecode

I am trying to figure out a bug (a serious performance downgrade). Unfortunately, I wasn't able to figure out why by going back many different versions of my code.
I am suspecting it could be some modifications to libraries that I've updated, not to mention in the meanwhile I've updated to GHC 7.6 from 7.4 (and if anybody knows if some laziness behavior has changed I would greatly appreciate it!).
I have an older executable of this code that does not have this bug and thus I wonder if there are any tools to tell me the library versions I was linking to from before? Like if it can figure out the symbols, etc.
GHC creates executables, which are notoriously hard to understand... On my Linux box I can view the assembly code by typing in
objdump -d <executable filename>
but I get back over 100K lines of code from just a simple "Hello, World!" program written in Haskell.
If you happen to have the GHC .hi files, you can get some information about the executable by typing in
ghc --show-iface <hi filename>
This won't give you the assembly code, but you can get some extra information that may prove useful.
As I mentioned in the comment above, on Linux you can use "ldd" to see what C-system libraries you used in the compile, but that is also probably less than useful.
You can try to use a disassembler, but those are generally written to disassemble to C, not anything higher level and certainly not Haskell. That being said, GHC compiles to C as an intermediary (at least it used to; has that changed?), so you might be able to learn something.
Personally I often find view system calls in action much more interesting than viewing pure assembly. On my Linux box, I can view all system calls by running using strace (use Wireshark for the network traffic equivalent):
strace <program executable>
This also will generate a lot of data, so it might only be useful if you know of some specific place where direct real world communication (i.e., changes to a file on the hard disk drive) goes wrong.
In all honesty, you are probably better off just debugging the problem from source, although, depending on the actual problem, some of these techniques may help you pinpoint something.
Most of these tools have Mac and Windows equivalents.
Since much has changed in the last 9 years, and apparently this is still the first result a search engine gives on this question (like for me, again), an updated answer is in order:
First of all, yes, while Haskell does not specify a bytecode format, bytecode is also just a kind of machine code, for a virtual machine. So for the rest of the answer I will treat them as the same thing. The “Core“ as well as the LLVM intermediate language, or even WASM could be considered equivalent too.
Secondly, if your old binary is statically linked, then of course, no matter the format your program is in, no symbols will be available to check out. Because that is what linking does. Even with bytecode, and even with just classic static #include in simple languages. So your old binary will be no good, no matter what. And given the optimisations compilers do, a classic decompiler will very likely never be able to figure out what optimised bits used to be partially what libraries. Especially with stream fusion and such “magic”.
Third, you can do the things you asked with a modern Haskell program. But you need to have your binaries compiled with -dynamic and -rdynamic, So not only the C-calling-convention libraries (e.g. .so), and the Haskell libraries, but also the runtime itself is dynamically loaded. That way you end up with a very small binary, consisting of only your actual code, dynamic linking instructions, and the exact data about what libraries and runtime were used to build it. And since the runtime is compiler-dependent, you will know the compiler too. So it would give you everything you need, but only if you compiled it right. (I recommend using such dynamic linking by default in any case as it saves memory.)
The last factor that one might forget, is that even the exact same compiler version might behave vastly differently, depending on what IT was compiled with. (E.g. if somebody put a backdoor in the very first version of GHC, and all GHCs after that were compiled with that first GHC, and nobody ever checked, then that backdoor could still be in the code today, with no traces in any source or libraries whatsoever. … Or for a less extreme case, that version of GHC your old binary was built with might have been compiled with different architecture options, leading to it putting more optimised instructions into the binaries it compiles for unless told to cross-compile.)
Finally, of course, you can profile even compiled binaries, by profiling their system calls. This will give you clues about which part of the code acted differently and how. (E.g. if you notice that your new binary floods the system with some slow system calls where the old one just used a single fast one. A classic OpenGL example would be using fast display lists versus slow direct calls to draw triangles. Or using a different sorting algorithm, or having switched to a different kind of data structure that fits your work load badly and thrashes a lot of memory.)

Loading Linux libraries at runtime

I think a major design flaw in Linux is the shared object hell when it comes to distributing programs in binary instead of source code form.
Here is my specific problem: I want to publish a Linux program in ELF binary form that should run on as many distributions as possible so my mandatory dependencies are as low as it gets: The only libraries required under any circumstances are libpthread, libX11, librt and libm (and glibc of course). I'm linking dynamically against these libraries when I build my program using gcc.
Optionally, however, my program should also support ALSA (sound interface), the Xcursor, Xfixes, and Xxf86vm extensions as well as GTK. But these should only be used if they are available on the user's system, otherwise my program should still run but with limited functionality. For example, if GTK isn't there, my program will fall back to terminal mode. Because my program should still be able to run without ALSA, Xcursor, Xfixes, etc. I cannot link dynamically against these libraries because then the program won't start at all if one of the libraries isn't there.
So I need to manually check if the libraries are present and then open them one by one using dlopen() and import the necessary function symbols using dlsym(). This, however, leads to all kinds of problems:
1) Library naming conventions:
Shared objects often aren't simply called "libXcursor.so" but have some kind of version extension like "libXcursor.so.1" or even really funny things like "libXcursor.so.0.2000". These extensions seem to differ from system to system. So which one should I choose when calling dlopen()? Using a hardcoded name here seems like a very bad idea because the names differ from system to system. So the only workaround that comes to my mind is to scan the whole library path and look for filenames starting with a "libXcursor.so" prefix and then do some custom version matching. But how do I know that they are really compatible?
2) Library search paths: Where should I look for the *.so files after all? This is also different from system to system. There are some default paths like /usr/lib and /lib but *.so files could also be in lots of other paths. So I'd have to open /etc/ld.so.conf and parse this to find out all library search paths. That's not a trivial thing to do because /etc/ld.so.conf files can also use some kind of include directive which means that I have to parse even more .conf files, do some checks against possible infinite loops caused by circular include directives etc. Is there really no easier way to find out the search paths for *.so?
So, my actual question is this: Isn't there a more convenient, less hackish way of achieving what I want to do? Is it really so complicated to create a Linux program that has some optional dependencies like ALSA, GTK, libXcursor... but should also work without it! Is there some kind of standard for doing what I want to do? Or am I doomed to do it the hackish way?
Thanks for your comments/solutions!
I think a major design flaw in Linux is the shared object hell when it comes to distributing programs in binary instead of source code form.
This isn't a design flaw as far as creators of the system are concerned; it's an advantage -- it encourages you to distribute programs in source form. Oh, you wanted to sell your software? Sorry, that's not the use case Linux is optimized for.
Library naming conventions: Shared objects often aren't simply called "libXcursor.so" but have some kind of version extension like "libXcursor.so.1" or even really funny things like "libXcursor.so.0.2000".
Yes, this is called external library versioning. Read about it here. As should be clear from that description, if you compiled your binaries using headers on a system that would normally give you libXcursor.so.1 as a runtime reference, then the only shared library you are compatible with is libXcursor.so.1, and trying to dlopen libXcursor.so.0.2000 will lead to unpredictable crashes.
Any system that provides libXcursor.so but not libXcursor.so.1 is either a broken installation, or is also incompatible with your binaries.
Library search paths: Where should I look for the *.so files after all?
You shouldn't be trying to dlopen any of these libraries using their full path. Just call dlopen("libXcursor.so.1", RTLD_GLOBAL);, and the runtime loader will search for the library in system-appropriate locations.

Will writing C in both Windows and Linux cause compiling problems?

I work from 2 different machines. One is Windows and the other is Linux. If I alternately work on the same project but switch between both OSes, will I eventually run into compiling errors? I ask because maybe there are standards supported by one but not by the other.
That question is a pretty broad one and it depends, strictly speaking, on your tool chain. If you were to use the same tool chain (e.g. GCC/MinGW or Clang), you'd be minimizing the chance for this class of errors. If you were to use Visual Studio on Windows and GCC or Clang on the Linux side, you'd run into more issues alone because some of the headers differ. So once your program leaves the realm of strict ANSI C (C89) you'll be on your own.
However, if you aren't careful you may run into a lot of other more profane errors, such as the compiler on Linux choking on the line endings if you didn't tell your editor on the Windows side to use these.
Ah, and also keep in mind that if you want to actually cross-compile, GCC may be the best choice and therefore the first part I mentioned in my answer becomes a moot point. GCC is a proven choice on both ends. And given your question it's unlikely that you are trying to write something like a kernel mode driver - which would be fundamentally different.
That may be only if your application use some specific API.
It is entirely possible to write code that works on both platforms, with no issues to compile the code. It is, however, not without some difficulties. Compilers allow you to use non-standard features in the compiler, and it's often hard to do more fancy user interfaces (even if it's still just text) because as soon as you start wanting to do more than "read a line of text as it is entered in a shell", it's into "non-standard" land.
If you do find yourself needing to do more than what the standard C library can do, make sure you isolate those parts of the code into a separate file (or a couple of files, one for Linux/Unix style systems and one for Windows systems).
Using the same compiler (gcc) would help avoiding problems with "compiler B doesn't compile code that works fine in compiler A".
But it's far from an absolute necessity - just make sure you compile the code on both platforms and with all of your "suppoerted" compilers often enough that you haven't dug a very deep hole that is hard to get out of before you discover that "it's not working on the other system". It certainly helps if you have (at least) a virtual machine running the other OS, so you can easily try both variants.
Ideally, you want to set up an automated system, such that when you change the code [and feel that the changes are "complete"], it automatically gets built on both platforms and all compilers you want to use. And if possible, also automatically tested!
I would also seriously consider using version control - that way, when something breaks on one or the other side, you can go back and look at what the code looked like before it stopped working, and (hopefully) find the reason it broke much quicker than "Hmm, I think it's the change I made to foo.c, lets take that out... No, not that one, ok how about the change here..." - at least with version control, you can say "Ok, so version 1234 doesn't work, let's try version 1220 - ok, that works. Now try 1228, still works - so change between 1229 and 1234 - try 1232, ah, it's broken..." No editing files and you can still go to any other version you like with very little difficulty. I have used Mercurial quite a bit, git a little bit, some subversion, and worked on a project in Perforce for a few years. All of these are good - personally, I think I prefer mercurial.
As a side-effect: Most version control systems also deal with filename and line endings in the saner way than doing this manually.
If you combine your version control system with a "automated build and test-system", such as Jenkins, you can get everything very automated. Jenkins is free and runs on both Windows and Linux, and you can use it to automatically build and test your code as and when you submit the code to the version control system.
It will not create a problem until you recompile the source code in the respective OS. If you wanna run your compiled file generated by windows(.exe or .obj), into linux or vice-versa then it will definitely create a problem and wont be possible. But you can move you source code (file with extension .c/.c++) into any of the os. And sometimes it also create problems with different header files, so take care of that also. Best practice is to use single OS for you entire project, avoid multiple os until it is extremely necessary.

Verifying two different build architectures (one a re-write of the other) are functionally equivalent

I'm re-writing a build that produces a number of things (shared/static libraries, jars, executables, etc). The question came up whether there's a way to verify that the results are functionally equivalent without doing a full top-to-bottom test of the resulting software.
However, that is proving to be more difficult to do than I anticipated.
As an example, I expected that the md5 of two objects produced from the same source (sun studio C++ compiler) and command-line parameters would have the same md5 hash, but that isn't the case. I can build the file, rename it, build again, and they have different hashes.
With that said ... is there a way do a quick check to verify that two files produced from separate build architectures of the same source tree (eg, two shared objects) are functionally equivalent?
edit I am sorry, I neglected to mention this is for a debug build ... when debugging flags aren't used the binaries are identical, but they've been using debugging flags by default for so many years their stuff breaks when you remove the debugging flags (part of the reason I'm re-writing the build is to take that particular 'feature' out of the build so we can get some proper testing going)
Windows DLLs have a link timestamp (TimeDateStamp) as part of PE image.
Looking at linker options, I don't see an option to suppress that. So re-linking a DLL (or an EXE) will always produce a different binary.
You could write a tool to zero out these timestamps (always at a fixed offset from file start), and compare MD5s afterwards. But you'll likely discover lots of other differences as well. In particular, any program that uses __DATE__ or __TIME__ builtins will give you trouble.
We've had to work quite hard to achieve bit-identical rebuilds (using GNU toolchain). It's possible (at least for open-source tools, on Linux), but not easy (as you've discovered).
I forgot about this question; I'm revisiting so I can give the answer I came up with.
objcopy can be used to produce a new binary file in different formats. It's been a few years since I worked on this, so the specifics escape me, but here's what I recall:
objcopy can strip various things out (debug info, symbol information, etc), but even after stripping stuff out I was still seeing different hashes between objects.
In the end I found I could convert it from ELF to other formats. I ended up dumping it to another format (I think I chose SREC) that consistently provided the same MD5 for objects built at different times with identical source/flags.
I'm betting I could have done this a better way with objcopy (or perhaps another binutils tool), but it was good enough to satisfy our concerns.

File systems with support to directory hard-linking

Does anybody know one? preferrably with linux implementation?
alternatively, does anybody know how much effort would it take to add it in any open-source implementation? (i mean: maybe it's enough to change an if statement, maybe i have to go carefully trhough the whole fs implementation adding tests; do you have that notion? ).
thanks....
HFS+ allows directory hardlinks in OSX 10.5. Only TimeMachine can create them since OSX 10.6, and HFS+ does some sanity checking that they do not introduce cycles.
However, Linux will not read them. Besides filesystems, this could be enforced at the VFS layer. Even if there are no cycles, some userspace tools rely on having no directory hard links (eg, a GNU find optimisation that lets it skip many directories; it can be disabled with -noleaf ).
Technically nothing keeps you from opening /dev/sda with a hex editor and creating one. However everything else in your system will fall apart if you do.
The best explanation i could find is this quote from jta:
User-added hardlinks to directories
are forbidden because they break the
directed acyclic graph structure of
the filesystem (which is an ASSERT in
Unixiana, roughly), and because they
confuse the hell out of
file-tree-walkers (a term Multicians
will recognize at sight, but Unix
geeks can probably figure out without
problems too.

Resources