File systems with support to directory hard-linking - linux

Does anybody know one? preferrably with linux implementation?
alternatively, does anybody know how much effort would it take to add it in any open-source implementation? (i mean: maybe it's enough to change an if statement, maybe i have to go carefully trhough the whole fs implementation adding tests; do you have that notion? ).
thanks....

HFS+ allows directory hardlinks in OSX 10.5. Only TimeMachine can create them since OSX 10.6, and HFS+ does some sanity checking that they do not introduce cycles.
However, Linux will not read them. Besides filesystems, this could be enforced at the VFS layer. Even if there are no cycles, some userspace tools rely on having no directory hard links (eg, a GNU find optimisation that lets it skip many directories; it can be disabled with -noleaf ).

Technically nothing keeps you from opening /dev/sda with a hex editor and creating one. However everything else in your system will fall apart if you do.
The best explanation i could find is this quote from jta:
User-added hardlinks to directories
are forbidden because they break the
directed acyclic graph structure of
the filesystem (which is an ASSERT in
Unixiana, roughly), and because they
confuse the hell out of
file-tree-walkers (a term Multicians
will recognize at sight, but Unix
geeks can probably figure out without
problems too.

Related

How to proceed with Linux source code customization?

I am a non CS/IT student, but having knowledge of C, Java, DS and Algorithms. Now-a-days I am focusing on operating system and had gained some of its concepts. But I want some practical knowledge of it. Merely writing algo code in java/c has no fun in doing. I have gone through many articles where they mentioned we can customize source code of Linux-kernel.
I want to start customizing the kernel as I move ahead in the learning of OS concepts and apply the same. It will make two goals achievable 1. I will gain practical idea of the operating system 2. I will have a project.
Problem which I face-
1. From where to get the source code? Which source code should I download? Also the documentation if possible.
https://www.kernel.org/
I went in there but there are so many of them which one will be better?
2. How will I customize the code once I have it?
Please give me suggestions with detail about how I should start this journey (of changing source code to customize Linux).
Moreover I am using Windows 8.
I recommend first reading several books on OSes and on programming. You need a broad CS culture (if possible get a CS degree)
I am a non CS/IT student,
You'll better become one, or else spend years of work to learn all the stuff a CS graduate student has learnt.
First, you need to be very familiar with Linux programming on user side (application programs). So read at least Advanced Linux Programming and study the source code of several programs, including shells (and some kind of servers). Read also carefully syscalls(2). Explore the state of your kernel (e.g. thru proc(5)...). Look into https://kernelnewbies.org/
I also recommend learning several programming languages. You should in particular read SICP, an excellent introduction to programming. Read also some book like programming language pragmatics. Read something about continuation and continuation passing style. Read the Dragon book. Read some Introduction to Algorithms. Read something about computer architecture and instruction set architecture
Merely writing algo code in java/c has no fun in doing.
But the kernel is also written in C (mostly) and full of algorithmic code. What makes you think you'll get more fun in it?
I want to start customizing the kernel as I move ahead in the learning of OS concepts and apply the same.
But why? Why don't you also consider studying and contributing to some user-level code
I would recommend first reading a good book on OSes in general, notably Operating Systems: Three Easy Pieces. Look also on OSdev.
At last, the general advice about kernel programming is don't. A common mistake is to try adding code inside the kernel to solve some issue that can and should be solved in user-land.
How will I customize the code once I have it?
You probably should not customize the kernel, but if you did you'll use familiar tools (a good source code editor like emacs or vim, a compiler and linker on the command line, a build automation tool like make). Patching the kernel is similar to patching some other free software. But testing your kernel is harder (because you'll often reboot).
You'll also find several books explaining the Linux kernel.
If you still want to customize the kernel you should first try to code some kernel module.
Moreover I am using Windows 8.
This is a huge mistake. You first need to be an advanced Linux user. So wipe out Windows from your computer, and install some Linux distribution -I recommend Debian- (and use only Linux, no more Windows). Become familiar with command line.
I seriously recommend to avoid working on the kernel as your first project.
I strongly recommend looking at some existing user-land free software project first (there are thousands of them, notably on github, e.g. choose some package in your distribution, study its source code, work on it, propose the patch to the community). Be able to build from source code a lot of things.
A wise man once said you "must act your way into right thinking, as you cannot think your way into right acting". In your case, you'll need to act as an experienced programmer would act, which means before we write any code, we need to answer some questions.
What do we want to change?
Why do we want to change it?
What are the repercussions of this change (ie what other functions - out of all the 10's of millions of lines of source code - call this function)?
After we've made the change, how are we going to compile it? In other words, there is a defined process for this. What is it?
After we compile our new kernel/module, how are we going to test it?
A good start, in addition to the answer that was just posted, would be to run LFS (Linux from Scratch). Get a successful install of that and use it as a starting point.
Now, since we're experienced programmers, we know that tinkering with a 10M+ line codebase is a recipe for trouble; we need a bit more direction than that. Here's a list of bugs that need to be fixed: https://bugzilla.kernel.org/buglist.cgi?chfield=%5BBug%20creation%5D&chfieldfrom=7d
I, for one, would be glad to see the one called "AUFS hangs on fanotify" go away, as I use AUFS with Docker on a daily basis.
If, down the line, you decide you'd rather hack on something besides the kernel, there are plenty of other options.
From your question it follows that you've already gained some concepts of an operating system. However, if you feel that it's still insufficient, it is OK to spend more time on learning. An operating system (mainly, a kernel) has certain tasks to perform like memory management (or memory protection), multiprogramming, hardware abstraction and so on. Neither of the topics may be neglected - they are all as important. So, if you have some time, you may refer to such useful books as "Modern Operating Systems" by Andrew Tanenbaum. Special books like that will shed much light on all important aspects of a modern OS. Suffice it to say, Linux kernel itself was started by Linus Torvalds because of a strong inspiration by MINIX - an educational project by A. Tanenbaum.
Such a cumbersome project like an OS kernel (BSD, Linux, etc.) contains lots of code. Many people are collaborating to write or enhance whatever parts of the kernel. So, there is a common and inevitable need to use a version control system. So, if you have an intention to submit your code to the kernel in future, you also have to have hands on with version control. Particularly, Linux relies on Git SCM (software configuration management - a synonym for version control).
So, once you have some knowledge of Git, you can install it on your computer and download Linux source code: git clone https://github.com/torvalds/linux.git
Determine your goals at Linux kernel modification. What do you want to achieve? Perhaps, you have a network card which you suspect to miss some features in Linux? Take a look at the other vendors' drivers and make an attempt to fix the driver of interest to include the features. Of course, this will require some knowledge of the HW, and, if the features are HW dependent, you will unlikely succeed to elaborate your code without special knowledge. But, in general, - if you are trying to make an enhancement, it assumes that you are an experienced Linux user yourself. Otherwise, how will you understand that some fixes/enhancements/etc. are required? So, I can't help but agree with the proposal to postpone Windows 8 for a while and start using some Linux distribution (eg. Debian).
If you succeed to determine your goals (eg. if you find a paper describing some desired changes in Linux kernel or if you decide to enhance some device drivers / write your own), you will be able to try it hands on. However, you still might need some helpful books, but, in this case, some Linux-specific ones. Also, writing C code for the kernel itself will require one important detail - you will need to comply with a so called coding standard, otherwise Linux kernel maintainers will not be able to accept your patches.
So, I made an attempt to outline some tips based on your current question. Of course, the job of kernel development has far more broad prerequisites, but these are which are just obvious.

How can I transparently adjust hardcoded filesystem paths?

I need to execute a compiled program which hardcodes various filesystem paths, with different values for those paths. For practical reasons, adjusting the source code of the program and recompiling it is not an option. Additionally, is is not acceptable to replace the hardcoded files with symlinks, or change the hardcoded files in any other way.
I can only think of two solutions: LD_PRELOAD hooks and patching the binary. The former seems easier and more reliable. Is there any better solution, or perhaps some existing software aiming to solve this problem?
P.S. I am aware I'm speaking of horrible hacks. The hardcoded software in question is widely distributed on Linux distributions, but it appears completely unmaintained, and I don't see any chance of getting a patch in, let alone having it hit distros, in the time I find acceptable.

FS based on a database without using fuse

To serve millions of files out of a single directory, being able to connect to a drive from hundreds of endpoints, and for some other reasons (to avoid gluster/nfs/all fs based networking solutions), I want to evaluate the possibility of making a filesystem that's based on a mongodb (or any other).
Basically, it works like fusefs, every single file is kept in mongo gridfs. In theory, I do,
mount mongodbfs /mountPoint mongodb://localhost
then when i say touch /mountPoint/test.txt this file is inserted into mongodb. This FS will also store uid/gid and perms with the file, we can throw hundreds of servers to it, and no useradd will be necessary. I'm not thinking to include all the features of FS, just the ones we need.
My question is, how do I start my quest in finding resources, books, links, people, developers who'd help me implement this? at least a proof of concept. Is it feasible? What should I expect as a timeline for such undertaking?
Please only think about gazillion small files and folders.
ps: after a few days of research i think this is the direction i'm heading
http://www.ibm.com/developerworks/library/l-sc12.html
http://www.flipcode.com/archives/Programming_a_Virtual_File_System-Part_I.shtml
ps2: i'm aware of the difficulty of this undertaking. however we're willing to set aside a serious budget and willing to form a serious team implementing it - only after we make sure that this isn't a black hole (thus the question).
Your most frequent piece of advice here is going to be "Use FUSE". This is excellent advice, and you would do well to heed it (As Sciurus pointed out there's already gridfs-fuse which is pretty close to what you want).
That said, if you want to take the long, hard road of pain and suffering (writing your own filesystem), you almost certainly want to take an operating systems course at a local university, or look at some online course materials ("Write a simple FS" is usually a small project. The filesystems typically suck because they're academic toys).
Follow that up with Linux File Systems (Moshe Bar) and a thorough reading of some simple filesystem drivers to see the basic skeleton of what you'll need to do.
As far as timeline, if you're a decent coder you can write a basic filesystem in a few days to a week (but it will SUCK). I wouldn't even guess how long it would take to write a GOOD filesystem -- UFS/FFS (the BSD filesystem) has been under continuous development since at least the late 1970s/early 1980s, and improvements/enhancements/bug fixes still pop up occasionally. Sun/Oracle's ZFS has gone through over 20 iterations in its relative short (6-year) life, though admittedly much of that is related to volume management capabilities.

How to build Linux system from kernel to UI layer

I have been looking into MeeGo, maemo, Android architecture.
They all have Linux Kernel, build some libraries on it, then build middle layer libraries [e.g telephony, media etc...].
Suppose i wana build my own system, say Linux Kernel, with some binariers like glibc, Dbus,.... UI toolkit like GTK+ and its binaries.
I want to compile every project from source to customize my own linux system for desktop, netbook and handheld devices. [starting from netbook first :)]
How can i build my own customize system from kernel to UI.
I apologize in advance for a very long winded answer to what you thought would be a very simple question. Unfortunately, piecing together an entire operating system from many different bits in a coherent and unified manner is not exactly a trivial task. I'm currently working on my own Xen based distribution, I'll share my experience thus far (beyond Linux From Scratch):
1 - Decide on a scope and stick to it
If you have any hope of actually completing this project, you need write an explanation of what your new OS will be and do once its completed in a single paragraph. Print that out and tape it to your wall, directly in front of you. Read it, chant it, practice saying it backwards and whatever else may help you to keep it directly in front of any urge to succumb to feature creep.
2 - Decide on a package manager
This may be the single most important decision that you will make. You need to decide how you will maintain your operating system in regards to updates and new releases, even if you are the only subscriber. Anyone, including you who uses the new OS will surely find a need to install something that was not included in the base distribution. Even if you are pushing out an OS to power a kiosk, its critical for all deployments to keep themselves up to date in a sane and consistent manner.
I ended up going with apt-rpm because it offered the flexibility of the popular .rpm package format while leveraging apt's known sanity when it comes to dependencies. You may prefer using yum, apt with .deb packages, slackware style .tgz packages or your own format.
Decide on this quickly, because its going to dictate how you structure your build. Keep track of dependencies in each component so that its easy to roll packages later.
3 - Re-read your scope then configure your kernel
Avoid the kitchen sink syndrome when making a kernel. Look at what you want to accomplish and then decide what the kernel has to support. You will probably want full gadget support, compatibility with file systems from other popular operating systems, security hooks appropriate for people who do a lot of browsing, etc. You don't need to support crazy RAID configurations, advanced netfilter targets and minixfs, but wifi better work. You don't need 10GBE or infiniband support. Go through the kernel configuration carefully. If you can't justify including a module by its potential use, don't check it.
Avoid pulling in out of tree patches unless you absolutely need them. From time to time, people come up with new scheduling algorithms, experimental file systems, etc. It is very, very difficult to maintain a kernel that consumes from anything else but mainline.
There are exceptions, of course. If going out of tree is the only way to meet one of your goals stated in your scope. Just remain conscious of how much additional work you'll be making for yourself in the future.
4 - Re-read your scope then select your base userland
At the very minimum, you'll need a shell, the core utilities and an editor that works without an window manager. Paying attention to dependencies will tell you that you also need a C library and whatever else is needed to make the base commands work. As Eli answered, Linux From Scratch is a good resource to check. I also strongly suggest looking at the LSB (Linux standard base), this is a specification that lists common packages and components that are 'expected' to be included with any distribution. Don't follow the LSB as a standard, compare its suggestions against your scope. If the purpose of your OS does not necessitate inclusion of something and nothing you install will depend on it, don't include it.
5 - Re-read your scope and decide on a window system
Again, referring to the everything including the kitchen sink syndrome, try and resist the urge to just slap a stock install of KDE or GNOME on top of your base OS and call it done. Another common pitfall is to install a full blown version of either and work backwards by removing things that aren't needed. For the sake of sane dependencies, its really better to work on this from bottom up rather than top down.
Decide quickly on the UI toolkit that your distribution is going to favor and get it (with supporting libraries) in place. Define consistency in UIs quickly and stick to it. Nothing is more annoying than having 10 windows open that behave completely differently as far as controls go. When I see this, I diagnose the OS with multiple personality disorder and want to medicate its developer. There was just an uproar regarding Ubuntu moving window controls around, and they were doing it consistently .. the inconsistency was the behavior changing between versions. People get very upset if they can't immediately find a button or have to increase their mouse mileage.
6 - Re-read your scope and pick your applications
Avoid kitchen sink syndrome here as well. Choose your applications not only based on your scope and their popularity, but how easy they will be for you to maintain. Its very likely that you will be applying your own patches to them (even simple ones like messengers updating a blinking light on the toolbar).
Its important to keep every architecture that you want to support in mind as you select what you want to include. For instance, if Valgrind is your best friend, be aware that you won't be able to use it to debug issues on certain ARM platforms.
Pretend you are a company and will be an employee there. Does your company pass the Joel test? Consider a continuous integration system like Hudson, as well. It will save you lots of hair pulling as you progress.
As you begin unifying all of these components, you'll naturally be establishing your own SDK. Document it as you go, avoid breaking it on a whim (refer to your scope, always). Its perfectly acceptable to just let linux be linux, which turns your SDK more into formal guidelines than anything else.
In my case, I'm rather fortunate to be working on something that is designed strictly as a server OS. I don't have to deal with desktop caveats and I don't envy anyone who does.
7 - Additional suggestions
These are in random order, but noting them might save you some time:
Maintain patch sets to every line of upstream code that you modify, in numbered sequence. An example might be 00-make-bash-clairvoyant.patch, this allows you to maintain patches instead of entire forked repositories of upstream code. You'll thank yourself for this later.
If a component has a testing suite, make sure you add tests for anything that you introduce. Its easy to just say "great, it works!" and leave it at that, keep in mind that you'll likely be adding even more later, which may break what you added previously.
Use whatever version control system is in use by the authors when pulling in upstream code. This makes merging of new code much, much simpler and shaves hours off of re-basing your patches.
Even if you think upstream authors won't be interested in your changes, at least alert them to the fact that they exist. Coordination is essential, even if you simply learn that a feature you just put in is already in planning and will be implemented differently in the future.
You may be convinced that you will be the only person to ever use your OS. Design it as though millions will use it, you never know. This kind of thinking helps avoid kludges.
Don't pull upstream alpha code, no matter what the temptation may be. Red Hat tried that, it did not work out well. Stick to stable releases unless you are pulling in bug fixes. Major bug fixes usually result in upstream releases, so make sure you watch and coordinate.
Remember that it's supposed to be fun.
Finally, realize that rolling an entire from-scratch distribution is exponentially more complex than forking an existing distribution and simply adding whatever you feel that it lacks. You need to reward yourself often by booting your OS and actually using it productively. If you get too frustrated, consistently confused or find yourself putting off work on it, consider making a lightweight fork of Debian or Ubuntu. You can then go back and duplicate it entirely from scratch. Its no different than prototyping an application in a simpler / rapid language first before writing it for real in something more difficult. If you want to go this route (first), gNewSense offers utilities to fork your own OS directly from Ubuntu. Note, by default, their utilities will strip any non free bits (including binary kernel blobs) from the resulting distro.
I strongly suggest going the completely from scratch route (first) because the experience that you will gain is far greater than making yet another fork. However, its also important that you actually complete your project. Best is subjective, do what works for you.
Good luck on your project, see you on distrowatch.
Check out Linux From Scratch:
Linux From Scratch (LFS) is a project
that provides you with step-by-step
instructions for building your own
customized Linux system entirely from
source.
Use Gentoo Linux. It is a compile from source distribution, very customizable. I like it a lot.

Pseudo filesystems on *nix

I need some opinions pointers on creating pseudo-filesystems for linux/*nix systems.
Firstly when I say pseudo-filesystem I mean something like /proc where the structure within does not represent actual files on disks or such but the state of the kernel. I would like to try something similar as an interface to an application.
As an example you could say, mount a ftp url to your filesystem and your browser app could then allow you to interact with the remote system doing ls et al on it and translating the standard filesystem requests into ftp ones.
So the first question is: how does one go about doing that? I have read a bit about it and it looks like you need to implement a new kernel module. If possible I would like to avoid that - my thinking being that someone may have already provided a tool for doing this sort of thing and provided the module to assist already.
My second question is: does anyone have a good list of examples of applications/services/whatever using this sort of technique to provide a filesystem based interface.
Lastly if anyone has any opinions on why this might be a good/bad idea to do such a thing on a generic level I would like to hear it.
A userspace filesystem via fuse would probably be your best way to go.
Regarding the next part of your question (which applications use this method), there is the window manager wmii, it uses the 9p filesystem via v9fs, which is a port of 9p to Linux. There are many examples on plan9, most notably acme. I suggested fuse because it seems more actively developed and mainstream in the Linux world, but plan9 is pretty much the reference for this approach as far as I know.

Resources