How to draw the normal to the plane in PCL - geometry

I have the plane equation describing the points belonging to a plane in 3D and the origin of the normal X, Y, Z. This should be enough to be able to generate something like a 3D arrow. In pcl this is possible via the viewer but I would like to actually store those 3D points inside the cloud. How to generate them then ? A cylinder with a cone on top ?

To generate a line perpendicular to the plane:
You have the plane equation. This gives you the direction of the normal to the plane. If you used PCL to get the plane, this is in ModelCoefficients. See the details here: SampleConsensusModelPerpendicularPlane
The first step is to make a line perpendicular to the normal at the point you mention (X,Y,Z). Let (NORMAL_X,NORMAL_Y,NORMAL_Z) be the normal you got from your plane equation. Something like.
pcl::PointXYZ pnt_on_line;
for(double distfromstart=0.0;distfromstart<LINE_LENGTH;distfromstart+=DISTANCE_INCREMENT){
pnt_on_line.x = X + distfromstart*NORMAL_X;
pnt_on_line.y = Y + distfromstart*NORMAL_Y;
pnt_on_line.z = Z + distfromstart*NORMAL_Z;
my_cloud.points.push_back(pnt_on_line);
}
Now you want to put a hat on your arrow and now pnt_on_line contains the end of the line exactly where you want to put it. To make the cone you could loop over angle and distance along the arrow, calculate a local x and y and z from that and convert them to points in point cloud space: the z part would be converted into your point cloud's frame of reference by multiplying with the normal vector as with above, the x and y would be multiplied into vectors perpendicular to this normal vectorE. To get these, choose an arbitrary unit vector perpendicular to the normal vector (for your x axis) and cross product it with the normal vector to find the y axis.
The second part of this explanation is fairly terse but the first part may be the more important.
Update
So possibly the best way to describe how to do the cone is to start with a cylinder, which is an extension of the line described above. In the case of the line, there is (part of) a one dimensional manifold embedded in 3D space. That is we have one variable that we loop over adding points. The cylinder is a two dimensional object so we have to loop over two dimensions: the angle and the distance. In the case of the line we already have the distance. So the above loop would now look like:
for(double distfromstart=0.0;distfromstart<LINE_LENGTH;distfromstart+=DISTANCE_INCREMENT){
for(double angle=0.0;angle<2*M_PI;angle+=M_PI/8){
//calculate coordinates of point and add to cloud
}
}
Now in order to calculate the coordinates of the new point, well we already have the point on the line, now we just need to add it to a vector to move it away from the line in the appropriate direction of the angle. Let's say the radius of our cylinder will be 0.1, and let's say an orthonormal basis that we have already calculated perpendicular to the normal of the plane (which we will see how to calculate later) is perpendicular_1 and perpendicular_2 (that is, two vectors perpendicular to each other, of length 1, also perpendicular to the vector (NORMAL_X,NORMAL_Y,NORMAL_Z)):
//calculate coordinates of point and add to cloud
pnt_on_cylinder.x = pnt_on_line.x + 0.1 * perpendicular_1.x * 0.1 * cos(angle) + perpendicular_2.x * sin(angle)
pnt_on_cylinder.y = pnt_on_line.y + perpendicular_1.y * 0.1 * cos(angle) + perpendicular_2.y * 0.1 * sin(angle)
pnt_on_cylinder.z = pnt_on_line.z + perpendicular_1.z * 0.1 * cos(angle) + perpendicular_2.z * 0.1 * sin(angle)
my_cloud.points.push_back(pnt_on_cylinder);
Actually, this is a vector summation and if we were to write the operation as vectors it would look like:
pnt_on_line+perpendicular_1*cos(angle)+perpendicular_2*sin(angle)
Now I said I would talk about how to calculate perpendicular_1 and perpendicular_2. Let K be any unit vector that is not parallel to (NORMAL_X,NORMAL_Y,NORMAL_Z) (this can be found by trying e.g. (1,0,0) then (0,1,0)).
Then
perpendicular_1 = K X (NORMAL_X,NORMAL_Y,NORMAL_Z)
perpendicular_2 = perpendicular_1 X (NORMAL_X,NORMAL_Y,NORMAL_Z)
Here X is the vector cross product and the above are vector equations. Note also that the original calculation of pnt_on_line involved a vector dot product and a vector summation (I am just writing this for completeness of the exposition).
If you can manage this then the cone is easy just by changing a couple of things in the double loop: the radius just changes along its length until it is zero at the end of the loop and in the loop distfromstart will not start at 0.

Related

how to calculate anti/clockwise angle in direction of lines?

I need to offset a curve, which by the simplest way is just shifting the points perpendicularly. I can access each point to calculate angle of each line along given path, for now I use atan2. Then I take those two angle and make average of it. It returns the shortest angle, not what I need in this case.
How can I calculate angle of each connection? Concerning that I am not interested in the shortest angle but the one that would create parallel offset curve.
Assuming 2D case...
So do a cross product of direction vectors of 2 neighboring lines the sign of z coordinate of the result will tell you if the lines are CW/CCW
So if you got 3 consequent control points on the polyline: p0,p1,p2 then:
d1 = p1-p0
d2 = p2-p1
if you use some 3D vector math then convert them to 3D by setting:
d1.z=0;
d2.z=0;
now compute 3D cross:
n = cross(d1,d2)
which returns vector perpendicular to both vectors of size equals to the area of quad (parallelogram) constructed with d1,d2 as base vectors. The direction (from the 2 possible) is determined by the winding rule of the p0,p1,p2 so inspecting z of the result is enough.
The n.x,n.y are not needed so you can compute directly without doing full cross product:
n.z=(d1.x*d2.y)-(d1.y*d2.x)
if (n.z>0) case1
if (n.z<0) case2
if the case1 is CW or CCW depends on your coordinate system properties (left/right handness). This approach is very commonly used in CG fur back face culling of polygons ...
if n.z is zero it means that your vectors/lines are either parallel or at lest one of them is zero.
I think these might interest you:
draw outline for some connected lines
How can I create an internal spiral for a polygon?
Also in 2D you do not need atan2 to get perpendicular vector... You can do instead this:
u = (x,y)
v = (-y,x)
w = (x,-y)
so u is any 2D vector and v,w are the 2 possible perpendicular vectors to u in 2D. they are the result of:
cross((x,y,0),(0,0,1))
cross((0,0,1),(x,y,0))

Making a Bezier curve based on 3 points the line will intersect

A quadratic bezier curve needs these three points, but I do not have an ordered pair of p1. Instead, I have the ordered pair of points here
The middle point (P1) is the highest point of the parabola.
The parabola is equal in both sides
How do I get the 3 points from image 1 using the points from image 2?
Apply the knowledge explained in https://pomax.github.io/bezierinfo/#abc and you should be good to go. You'll need to decide which time value that "somewhere on the curve" point has, and then you can use the formula for the projection ratio to find the actual control point coordinate.
However, at t=0.5 the ratio is just "1:1" so things get even easier because your point projects onto the midpoint of the line that connects that first and last point, and the real control point is the same distance "above" your point as the point is above that line:
So you just compute the midpoint:
m =
x: (p1.x + p2.x) / 2
y: (p1.y + p2.y) / 2
and the x and y distance to the midpoint from the "p2 you have" point:
d =
x: (p2.x - m.x)
y: (p2.y - m.y)
and then the real p2 is simply that distance away from the "p2 you have":
real2 =
x: p2.x + d.x
y: p2.y + d.y
However, note that this only works for t=0.5: both that projected point on the start--end line and the distance ratios will be (possibly very) different for any other t value and you should use the formula that the Bezier primer talks about.
Also note that what you call "the peak" is in no way guaranteed to be at t=0.5... for example, have a look at this curve:
The point that is marked as belonging to t=0.5 is certainly not where you would say the "peak" of the curve is (in fact, that's closer to t=0.56), so if all you have is three points, you technically always have incomplete information and you're going to have to invent some rule for deciding how to fill in the missing bits. In this case "what t value do I consider my somewhere-on-the-curve point to be?".

How do I QUICKLY find the closest intersection in 2D between a ray and m polylines?

How do I find the closest intersection in 2D between a ray:
x = x0 + t*cos(a), y = y0 + t*sin(a)
and m polylines:
{(x1,y1), (x2,y2), ..., (xn,yn)}
QUICKLY?
I started by looping trough all linesegments and for each linesegment;
{(x1,y1),(x2,y2)} solving:
x1 + u*(x2-x1) = x0 + t*cos(a)
y1 + u*(y2-y1) = y0 + t*sin(a)
by Cramer's rule, and afterward sorting the intersections on distance, but that was slow :-(
BTW: the polylines happens to be monotonically increasing in x.
Coordinate system transformation
I suggest you first transform your setup to something with easier coordinates:
Take your point p = (x, y).
Move it by (-x0, -y0) so that the ray now starts at the center.
Rotate it by -a so that the ray now lies on the x axis.
So far the above operations have cost you four additions and four multiplications per point:
ca = cos(a) # computed only once
sa = sin(a) # likewise
x' = x - x0
y' = y - y0
x'' = x'*ca + y'*sa
y'' = y'*ca - x'*sa
Checking for intersections
Now you know that a segment of the polyline will only intersect the ray if the sign of its y'' value changes, i.e. y1'' * y2'' < 0. You could even postpone the computation of the x'' values until after this check. Furthermore, the segment will only intersect the ray if the intersection of the segment with the x axis occurs for x > 0, which can only happen if either value is greater than zero, i.e. x1'' > 0 or x2'' > 0. If both x'' are greater than zero, then you know there is an intersection.
The following paragraph is kind of optional, don't worry if you don't understand it, there is an alternative noted later on.
If one x'' is positive but the other is negative, then you have to check further. Suppose that the sign of y'' changed from negative to positive, i.e. y1'' < 0 < y2''. The line from p1'' to p2'' will intersect the x axis at x > 0 if and only if the triangle formed by p1'', p2'' and the origin is oriented counter-clockwise. You can determine the orientation of that triangle by examining the sign of the determinant x1''*y2'' - x2''*y1'', it will be positive for a counter-clockwise triangle. If the direction of the sign change is different, the orientation has to be different as well. So to take this together, you can check whether
(x1'' * y2'' - x2'' * y1'') * y2'' > 0
If that is the case, then you have an intersection. Notice that there were no costly divisions involved so far.
Computing intersections
As you want to not only decide whether an intersection exists, but actually find a specific one, you now have to compute that intersection. Let's call it p3. It must satisfy the equations
(x2'' - x3'')/(y2'' - y3'') = (x1'' - x3'')/(y1'' - y3'') and
y3'' = 0
which results in
x3'' = (x1'' * y1'' - x2'' * y2'')/(y1'' - y2'')
Instead of the triangle orientation check from the previous paragraph, you could always compute this x3'' value and discard any results where it turns out to be negative. Less code, but more divisions. Benchmark if in doubt about performance.
To find the point closest to the origin of the ray, you take the result with minimal x3'' value, which you can then transform back into its original position:
x3 = x3''*ca + x0
y3 = x3''*sa + y0
There you are.
Note that all of the above assumed that all numbers were either positive or negative. If you have zeros, it depends on the exact interpretation of what you actually want to compute, how you want to handle these border cases.
To avoid checking intersection with all segments, some space partition is needed, like Quadtree, BSP tree. With space partition it is needed to check ray intersection with space partitions.
In this case, since points are sorted by x-coordinate, it is possible to make space partition with boxes (min x, min y)-(max x, max y) for parts of polyline. Root box is min-max of all points, and it is split in 2 boxes for first and second part of a polyline. Number of segments in parts is same or one box has one more segment. This box splitting is done recursively until only one segment is in a box.
To check ray intersection start with root box and check is it intersected with a ray, if it is than check 2 sub-boxes for an intersection and first test closer sub-box then farther sub-box.
Checking ray-box intersection is checking if ray is crossing axis aligned line between 2 positions. That is done for 4 box boundaries.

Finding most distant point in circle from point

I'm trying to find the best way to get the most distant point of a circle from a specified point in 2D space. What I have found so far, is how to get the distance between the point and the circle position, but I'm not entirely sure how to expand this to find the most distant point of the circle.
The known variables are:
Point a
Point b (circle position)
Radius r (circle radius)
To find the distance between the point and the circle position, I have found this:
xd = x2 - x1
yd = y2 - y1
Distance = SquareRoot(xd * xd + yd * yd)
It seems to me, this is part of the solution. How would this be expanded to get the position of Point x in the below image?
As an additional but optional part of the question: I have read in some places that it would be possible to get the distance portion without using the Square Root, which is very performance intensive and should be avoided if fast code is necessary. In my case, I would be doing this calculation quite often; Any comments on this within the context of the main question would be welcome too.
What about this?
Calculate A-B.
We now have a vector pointing from the center of the circle towards A (if B is the origin, skip this and just consider point A a vector).
Normalize.
Now we have a well defined length (the length is 1)
If the circle is not of unit radius, multiply by radius. If it is unit radius, skip this.
Now we have the correct length.
Invert sign (can be done in one step with 3., just multiply with the negative radius)
Now our vector points in the correct direction.
Add B (if B is the origin, skip this).
Now our vector is offset correctly so its endpoint is the point we want.
(Alternatively, you could calculate B-A to save the negation, but then you have to do one more operation to offset the origin correctly.)
By the way, it works the same in 3D, except the circle would be a sphere, and the vectors would have 3 components (or 4, if you use homogenous coords, in this case remember -- for correctness -- setting w to 0 when "turning points into vectors" and to 1 at the end when making a point from the vector).
EDIT:
(in reply of pseudocode)
Assuming you have a vec2 class which is a struct of two float numbers with operators for vector subtraction and scalar multiplicaion (pretty trivial, around a dozen lines of code) and a function normalize which needs to be no more than a shorthand for multiplying with inv_sqrt(x*x+y*y), the pseudocode (my pseudocode here is something like a C++/GLSL mix) could look something like this:
vec2 most_distant_on_circle(vec2 const& B, float r, vec2 const& A)
{
vec2 P(A - B);
normalize(P);
return -r * P + B;
}
Most math libraries that you'd use should have all of these functions and types built-in. HLSL and GLSL have them as first type primitives and intrinsic functions. Some GPUs even have a dedicated normalize instruction.

Projective transformation

Given two image buffers (assume it's an array of ints of size width * height, with each element a color value), how can I map an area defined by a quadrilateral from one image buffer into the other (always square) image buffer? I'm led to understand this is called "projective transformation".
I'm also looking for a general (not language- or library-specific) way of doing this, such that it could be reasonably applied in any language without relying on "magic function X that does all the work for me".
An example: I've written a short program in Java using the Processing library (processing.org) that captures video from a camera. During an initial "calibrating" step, the captured video is output directly into a window. The user then clicks on four points to define an area of the video that will be transformed, then mapped into the square window during subsequent operation of the program. If the user were to click on the four points defining the corners of a door visible at an angle in the camera's output, then this transformation would cause the subsequent video to map the transformed image of the door to the entire area of the window, albeit somewhat distorted.
Using linear algebra is much easier than all that geometry! Plus you won't need to use sine, cosine, etc, so you can store each number as a rational fraction and get the exact numerical result if you need it.
What you want is a mapping from your old (x,y) co-ordinates to your new (x',y') co-ordinates. You can do it with matrices. You need to find the 2-by-4 projection matrix P such that P times the old coordinates equals the new co-ordinates. We'll assume that you're mapping lines to lines (not, for instance, straight lines to parabolas). Because you have a projection (parallel lines don't stay parallel) and translation (sliding), you need a factor of (xy) and (1), too. Drawn as matrices:
[x ]
[a b c d]*[y ] = [x']
[e f g h] [x*y] [y']
[1 ]
You need to know a through h so solve these equations:
a*x_0 + b*y_0 + c*x_0*y_0 + d = i_0
a*x_1 + b*y_1 + c*x_1*y_1 + d = i_1
a*x_2 + b*y_2 + c*x_2*y_2 + d = i_2
a*x_3 + b*y_3 + c*x_3*y_3 + d = i_3
e*x_0 + f*y_0 + g*x_0*y_0 + h = j_0
e*x_1 + f*y_1 + g*x_1*y_1 + h = j_1
e*x_2 + f*y_2 + g*x_2*y_2 + h = j_2
e*x_3 + f*y_3 + g*x_3*y_3 + h = j_3
Again, you can use linear algebra:
[x_0 y_0 x_0*y_0 1] [a e] [i_0 j_0]
[x_1 y_1 x_1*y_1 1] * [b f] = [i_1 j_1]
[x_2 y_2 x_2*y_2 1] [c g] [i_2 j_2]
[x_3 y_3 x_3*y_3 1] [d h] [i_3 j_3]
Plug in your corners for x_n,y_n,i_n,j_n. (Corners work best because they are far apart to decrease the error if you're picking the points from, say, user-clicks.) Take the inverse of the 4x4 matrix and multiply it by the right side of the equation. The transpose of that matrix is P. You should be able to find functions to compute a matrix inverse and multiply online.
Where you'll probably have bugs:
When computing, remember to check for division by zero. That's a sign that your matrix is not invertible. That might happen if you try to map one (x,y) co-ordinate to two different points.
If you write your own matrix math, remember that matrices are usually specified row,column (vertical,horizontal) and screen graphics are x,y (horizontal,vertical). You're bound to get something wrong the first time.
EDIT
The assumption below of the invariance of angle ratios is incorrect. Projective transformations instead preserve cross-ratios and incidence. A solution then is:
Find the point C' at the intersection of the lines defined by the segments AD and CP.
Find the point B' at the intersection of the lines defined by the segments AD and BP.
Determine the cross-ratio of B'DAC', i.e. r = (BA' * DC') / (DA * B'C').
Construct the projected line F'HEG'. The cross-ratio of these points is equal to r, i.e. r = (F'E * HG') / (HE * F'G').
F'F and G'G will intersect at the projected point Q so equating the cross-ratios and knowing the length of the side of the square you can determine the position of Q with some arithmetic gymnastics.
Hmmmm....I'll take a stab at this one. This solution relies on the assumption that ratios of angles are preserved in the transformation. See the image for guidance (sorry for the poor image quality...it's REALLY late). The algorithm only provides the mapping of a point in the quadrilateral to a point in the square. You would still need to implement dealing with multiple quad points being mapped to the same square point.
Let ABCD be a quadrilateral where A is the top-left vertex, B is the top-right vertex, C is the bottom-right vertex and D is the bottom-left vertex. The pair (xA, yA) represent the x and y coordinates of the vertex A. We are mapping points in this quadrilateral to the square EFGH whose side has length equal to m.
Compute the lengths AD, CD, AC, BD and BC:
AD = sqrt((xA-xD)^2 + (yA-yD)^2)
CD = sqrt((xC-xD)^2 + (yC-yD)^2)
AC = sqrt((xA-xC)^2 + (yA-yC)^2)
BD = sqrt((xB-xD)^2 + (yB-yD)^2)
BC = sqrt((xB-xC)^2 + (yB-yC)^2)
Let thetaD be the angle at the vertex D and thetaC be the angle at the vertex C. Compute these angles using the cosine law:
thetaD = arccos((AD^2 + CD^2 - AC^2) / (2*AD*CD))
thetaC = arccos((BC^2 + CD^2 - BD^2) / (2*BC*CD))
We map each point P in the quadrilateral to a point Q in the square. For each point P in the quadrilateral, do the following:
Find the distance DP:
DP = sqrt((xP-xD)^2 + (yP-yD)^2)
Find the distance CP:
CP = sqrt((xP-xC)^2 + (yP-yC)^2)
Find the angle thetaP1 between CD and DP:
thetaP1 = arccos((DP^2 + CD^2 - CP^2) / (2*DP*CD))
Find the angle thetaP2 between CD and CP:
thetaP2 = arccos((CP^2 + CD^2 - DP^2) / (2*CP*CD))
The ratio of thetaP1 to thetaD should be the ratio of thetaQ1 to 90. Therefore, calculate thetaQ1:
thetaQ1 = thetaP1 * 90 / thetaD
Similarly, calculate thetaQ2:
thetaQ2 = thetaP2 * 90 / thetaC
Find the distance HQ:
HQ = m * sin(thetaQ2) / sin(180-thetaQ1-thetaQ2)
Finally, the x and y position of Q relative to the bottom-left corner of EFGH is:
x = HQ * cos(thetaQ1)
y = HQ * sin(thetaQ1)
You would have to keep track of how many colour values get mapped to each point in the square so that you can calculate an average colour for each of those points.
I think what you're after is a planar homography, have a look at these lecture notes:
http://www.cs.utoronto.ca/~strider/vis-notes/tutHomography04.pdf
If you scroll down to the end you'll see an example of just what you're describing. I expect there's a function in the Intel OpenCV library which will do just this.
There is a C++ project on CodeProject that includes source for projective transformations of bitmaps. The maths are on Wikipedia here. Note that so far as i know, a projective transformation will not map any arbitrary quadrilateral onto another, but will do so for triangles, you may also want to look up skewing transforms.
If this transformation has to look good (as opposed to the way a bitmap looks if you resize it in Paint), you can't just create a formula that maps destination pixels to source pixels. Values in the destination buffer have to be based on a complex averaging of nearby source pixels or else the results will be highly pixelated.
So unless you want to get into some complex coding, use someone else's magic function, as smacl and Ian have suggested.
Here's how would do it in principle:
map the origin of A to the origin of B via a traslation vector t.
take unit vectors of A (1,0) and (0,1) and calculate how they would be mapped onto the unit vectors of B.
this gives you a transformation matrix M so that every vector a in A maps to M a + t
invert the matrix and negate the traslation vector so for every vector b in B you have the inverse mapping b -> M-1 (b - t)
once you have this transformation, for each point in the target area in B, find the corresponding in A and copy.
The advantage of this mapping is that you only calculate the points you need, i.e. you loop on the target points, not the source points. It was a widely used technique in the "demo coding" scene a few years back.

Resources