Remember back in primary school where you learn to carry numbers?
Example:
123
+ 127
-------
250
You carry the 1 from 3+7 over to the next column, and change the first column to 0?
Anyway, what I am getting at is that I want to make a program that calculates how many carries that the 2 numbers make (addition).
The way I am doing it, is that I am converting both numbers to strings, splitting them into individuals, and turning them back into integers. After that, I am going to run through adding 1 at a time, and when a number is 2 digits long, I will take 10 off it and move to the next column, calculating as I go.
The problem is, I barely know how to do that, and it also sounds pretty slow.
Here is my code so far.
numberOne = input('Number: ')
numberTwo = input('Number: ')
listOne = [int(i) for i in str(numberOne)]
listTwo = [int(i) for i in str(numberTwo)]
And then... I am at a loss for what to do. Could anyone please help?
EDIT:
Some clarification.
This should work with floats as well.
This only counts the amount of times it has carried, not the amount of carries. 9+9+9 will be 1, and 9+9 will also be 1.
The numbers are not the same length.
>>> def countCarries(n1, n2):
... n1, n2 = str(n1), str(n2) # turn the numbers into strings
... carry, answer = 0, 0 # we have no carry terms so far, and we haven't carried anything yet
... for one,two in itertools.zip_longest(n1[::-1], n2[::-1], fillvalue='0'): # consider the corresponding digits in reverse order
... carry = int(((int(one)+int(two)+carry)//10)>0) # calculate whether we will carry again
... answer += ((int(one)+int(two)+carry)//10)>0 # increment the number of carry terms, if we will carry again
... carry += ((int(one)+int(two)+carry)//10)>0 # compute the new carry term
... return answer
...
>>> countCarries(127, 123)
1
>>> countCarries(127, 173)
2
Related
I made a program to find primes below a given number.
number = int(input("Enter number: "))
prime_numbers = [2] # First prime is needed.
for number_to_be_checked in range(3, number + 1):
square_root = number_to_be_checked ** 0.5
for checker in prime_numbers: # Checker will become
# every prime number below the 'number_to_be_checked'
# variable because we are adding all the prime numbers
# in the 'prime_numbers' list.
if checker > square_root:
prime_numbers.append(number_to_be_checked)
break
elif number_to_be_checked % checker == 0:
break
print(prime_numbers)
This program checks every number below the number given as the input. But primes are of the form 6k ± 1 only. Therefore, instead of checking all the numbers, I defined a generator that generates all the numbers of form 6k ± 1 below the number given as the input. (I added 3 also in the prime_numbers list while initializing it as 2,3 cannot be of the form 6k ± 1)
def potential_primes(number: int) -> int:
"""Generate the numbers potential to be prime"""
# Prime numbers are always of the form 6k ± 1.
number_for_function = number // 6
for k in range(1, number_for_function + 1):
yield 6*k - 1
yield 6*k + 1
Obviously, the program should have been much faster because I am checking comparatively many less numbers. But, counterintuitively the program is slower than before. What could be the reason behind this?
In every six numbers, three are even and one is a multiple of 3. The other two are 6-coprime, so are potentially prime:
6k+0 6k+1 6k+2 6k+3 6k+4 6k+5
even even even
3x 3x
For the three evens your primality check uses only one division (by 2) and for the 4th number, two divisions. In all, five divisions that you seek to avoid.
But each call to a generator has its cost too. If you just replace the call to range with the call to create your generator, but leave the other code as is(*), you are not realizing the full savings potential.
Why? Because (*)if that's the case, while you indeed test only 1/3 of the numbers now, you still test each of them by 2 and 3. Needlessly. And apparently the cost of generator use is too high.
The point to this technique known as wheel factorization is to not test the 6-coprime (in this case) numbers by the primes which are already known to not be their divisors, by construction.
Thus, you must start with e.g. prime_numbers = [5,7] and use it in your divisibility testing loop, not all primes, which start with 2 and 3, which you do not need.
Using nested for loop along with square root will be heavy on computation, rather look at Prime Sieve Algorithm which is much faster but does take some memory.
One way to use the 6n±1 idea is to alternate step sizes in the main loop by stepping 2 then 4. My Python is not good, so this is pseudocode:
function listPrimes(n)
// Deal with low numbers.
if (n < 2) return []
if (n = 2) return [2]
if (n = 3) return [2, 3]
// Main loop
primeList ← [2, 3]
limit ← 1 + sqrt(n) // Calculate square root once.
index ← 5 // We have checked 2 and 3 already.
step ← 2 // Starting step value: 5 + 2 = 7.
while (index <= limit) {
if (isPrime(index)) {
primeList.add(index)
}
index ← index + step
step ← 6 - step // Alternate steps of 2 and 4
}
return primeList
end function
We are supposed to make a number guessing game where depending on what difficulty the player chooses the game generates 4 or 5 numbers and the player is given all but the last, which they have to guess in 3 tries. The numbers have to be equal distances apart, and the numbers have to be within the 1 - 100 range.
So far I know what it will look like roughly.
def guesses:
function for accumulating tries as long as guesses_taken < 3
let user retry, or congratulate and offer to replay
def game_easy:
code for number generation, step value, etc
guesses()
def game_hard:
same code as easy mode, with the appropriate changes
guesses()
For the random numbers, all I have so far is this
guess_init = rand.int (1,100)
step = rand.int (1,20)
guess_init = guess_init + step
and just having it loop and add the step 4 or 5 times respectively.
Where I'm stuck is 1. How to ensure that none of the numbers generated exceed 100 (so it can't be a step of 1 starting at 98), and 2. how to print all but the last number generated.
What I was thinking was assigning the last number generated to a variable that the player input must match. But I was also thinking that if "guess_init" has ran through the loop, then it will already be holding the value of the last number and all Ill have to check is that user input == guess_init.
In your Case you should read the random section from the Python Standard Library. Especially this is relevant:
random.randrange(start, stop[, step])
Return a randomly selected element from range(start, stop, step). This is equivalent to choice(range(start, stop, step)), but doesn’t actually build a range object.
So I am working on a problem which need me to get factors of a certain number. So as always I am using the module % in order to see if a number is divisible by a certain number and is equal to zero. But when ever I am trying to do this I keep getting an error saying ZeroDivisionError . I tried adding a block of code like this so python does not start counting from zero instead it starts to count from one for potenial in range(number + 1): But this does not seem to work. Below is the rest of my code any help will be appreciated.
def Factors(number):
factors = []
for potenial in range(number + 1):
if number % potenial == 0:
factors.append(potenial)
return factors
In your for loop you are iterating from 0 (range() assumes starting number to be 0 if only 1 argument is given) up to "number". There is a ZeroDivisionError since you are trying to calculate number modulo 0 (number % 0) at the start of the for loop. When calculating the modulo, Python tries to divide number by 0 causing the ZeroDivisionError. Here is the corrected code (fixed the indentation):
def get_factors(number):
factors = []
for potential in range(1, number + 1):
if number % potential == 0:
factors.append(potential)
return factors
However, there are betters ways of calculating factors. For example, you can iterate only up to sqrt(n) where n is the number and then calculate "factor pairs" e.g. if 3 is a factor of 15 then 15/3 which is 5 is also a factor of 15.
I encourage you to try an implement a more efficient algorithm.
Stylistic note: According to PEP 8, function names should be lowercase with words separated by underscores. Uppercase names generally indicate class definitions.
The code below generates two random integers within range specified by argv, tests if the integers match and starts again. At the end it prints some stats about the process.
I've noticed though that increasing the value of argv reduces the percentage of tested possibilities exponentially.
This seems counter intuitive to me so my question is, is this an error in the code or are the numbers real and if so then what am I not thinking about?
#!/usr/bin/python3
import sys
import random
x = int(sys.argv[1])
a = random.randint(0,x)
b = random.randint(0,x)
steps = 1
combos = x**2
while a != b:
a = random.randint(0,x)
b = random.randint(0,x)
steps += 1
percent = (steps / combos) * 100
print()
print()
print('[{} ! {}]'.format(a,b), end=' ')
print('equality!'.upper())
print('steps'.upper(), steps)
print('possble combinations = {}'.format(combos))
print('explored {}% possibilitys'.format(percent))
Thanks
EDIT
For example:
./runscrypt.py 100000
will returm me something like:
[65697 ! 65697] EQUALITY!
STEPS 115867
possble combinations = 10000000000
explored 0.00115867% possibilitys
"explored 0.00115867% possibilitys" <-- This number is too low?
This experiment is really a geometric distribution.
Ie.
Let Y be the random variable of the number of iterations before a match is seen. Then Y is geometrically distributed with parameter 1/x (the probability of generating two matching integers).
The expected value, E[Y] = 1/p where p is the mentioned probability (the proof of this can be found in the link above). So in your case the expected number of iterations is 1/(1/x) = x.
The number of combinations is x^2.
So the expected percentage of explored possibilities is really x/(x^2) = 1/x.
As x approaches infinity, this number approaches 0.
In the case of x=100000, the expected percentage of explored possibilities = 1/100000 = 0.001% which is very close to your numerical result.
I've a set of string [S1 S2 S3 ... Sn] and I'm to count all such target strings T such that each one of S1 S2... Sn can be converted into T within a total of K edits. All the strings are of fixed length L and an edit here is hamming distance.
All I've is sort of brute force approach.
so, If my alphabet size is 4, I've sample space of O(4^L) and it takes O(L) time to check each one of them. I can't seem to bring down the complexity from exponential to some poly or pseudo-poly! Is there any way to prune down the sample space to do better?
I tried to visualize it as in a L-dimensional vector space. I've been given N points and have to count all the points whose sum of distance from the given N points is less than or equal to K. i.e. d1 + d2 + d3 +...+ dN <= K
Is there any known geometric algorithm which solves this or similar problem with a better complexity? Kindly point me in the right direction or any hints are appreciated.
Thank you
You can do this efficiently with dynamic programming.
The key idea is that you don't need to enumerate all possible target strings, you just need to know how many ways targets are possible with K edits considering only the string indicies after I.
alphabet = 'abcd'
s = [ 'aabbbb', 'bacaaa', 'dabbbb', 'cabaaa']
# use memoized from http://wiki.python.org/moin/PythonDecoratorLibrary
#memoized
def count(edits_left, index):
if index == -1 and edits_left >= 0:
return 1
if edits_left < 0:
return 0
ret = 0
for char in alphabet:
edits_used = 0
for mutate_str in s:
if mutate_str[index] != char:
edits_used += 1
ret += count(edits_left - edits_used, index - 1)
return ret
Thinking out loud, it seems to me that this problem boils down to a combinatorial problem.
In general for a string S of length L, there are a total of C(L,K) (binomial coefficient) positions that can be substituted and therefore (ALPHABET_SIZE^K)*C(L,K) target strings T from a Hamming Distance of K.
Binomial Coefficient can be computed quite easily using Dynamic Programming and the Pascal Triangle... No need to get crazy into factoriel etc...
Now that one string case is treated, dealing with multiple strings is a little bit more tricky since you might double count targets. Intuitively though if S1 is K far from S2 then both string will generate the same set of target so you don't double count in this case. This last statement might be a long shot that's why I made sure to say "intuitively" :)
Hope it helps,