threading in Windows store app - multithreading

I am reading sample Hilo provided by MS, under ImageBrowserViewModel.cpp there is some code I am not understand:
// Observe the update after waiting the specified amount of time.
create_task([timeToWait]() {
assert(IsBackgroundThread());
::wait(timeToWait);
}).then([weakThis]() {
assert(IsMainThread());
auto vm = weakThis.Resolve<ImageBrowserViewModel>();
if (nullptr != vm)
{
vm->ObserveFileChange();
vm->m_hasFileUpdateTask = false;
}
}, task_continuation_context::use_current()).then(ObserveException<void>(m_exceptionPolicy));
The quest is app use IsBackgroundThread() & IsMainThread() to assert it should be correctly called under certain context. But for the ::wait(timeToWait) function call, there is no task_continuation_context defined to make sure it runs in background, I just wonder how does it make to work?? Thanks a lot!

The default for constructed tasks (as the first task is in your code snippet) is task_continuation_context::use_arbitrary(), so even though it is not specified this is what it will be. The task continuation lambda does assert this before calling ::wait (which would throw an exception if it attempted to run on the UI thread).

Related

Kotlin: Why isn't job.invokeOnCompletion() block running on main thread?

In my Android application I have code that should run periodically in its own coroutine and should be cancelable.
for this I have the following functions:
startJob(): Initializes the job, sets up invokeOnCompletion() and starts the work loop in the respective scope
private fun startJob() {
if (::myJob.isInitialized && myJob.isActive) {
return
}
myJob= Job()
myJob.invokeOnCompletion {
it?.message.let {
var msg = it
if (msg.isNullOrBlank()) {
msg = "Job stopped. Reason unknown"
}
myJobCompleted(msg)
}
}
CoroutineScope(Dispatchers.IO + myJob).launch {
workloop()
}
}
workloop(): The main work loop. Do some work in a loop with a set delay in each iteration:
private suspend fun workloop() {
while (true) {
// doing some stuff here
delay(setDelayInMilliseconds)
}
}
myJobCompleted: do some finalizing. For now simply log a message for testing.
private fun myJobCompleted(msg: String) {
try {
mainActivityReference.logToGUI(msg)
}
catch (e:Exception){
println("debug: " + e.message)
}
}
Running this and calling myJob.Cancel() will throw the following exception in myJobCompleted():
debug: Only the original thread that created a view hierarchy can touch its views.
I'm curious as to why this code isn't running on the main thread, since startJob() IS called from the main thread?
Furthermore: is there a option similar to using a CancellationTokenSource in c#, where the job is not immediately cancelled, but a cancellation request can be checked each iteration of the while loop?
Immediately breaking off the job, regardless of what it is doing (although it will pretty much always be waiting for the delay on cancellation) doesn't seem like a good idea to me.
It is not the contract of Job.invokeOnCompletion to run on the same thread where Job is created. Moreover, such a contract would be impossible to implement.
You can't expect an arbitrary piece of code to run on an arbitrary thread, just because there was some earlier method invocation on that thread. The ability of the Android main GUI thread to execute code submitted from the outside is special, and involves the existence a top-level event loop.
In the world of coroutines, what controls thread assignment is the coroutine context, while clearly you are outside of any context when creating the job. So the way to fix it is to explicitly launch(Dispatchers.Main) a coroutine from within invokeOnCompletion.
About you question on cancellation, you can use withContext(NonCancellable) to surround the part of code you want to protect from cancellation.

Sleeping in action script 2 using getTimer() method

How can I correctly perform something like sleep function using getTimer()? I need to do an action every 15 seconds. The code below doesn't work. I compile it with mtasc compiler on Linux.
class Tuto
{
static var lastMsg = 0;
static var msgInt = 15000;
static function main(mc)
{
if(getTimer() > lastMsg + msgInt)
{
trace("something");
lastMsg = getTimer();
}
}
}
The main instruction will be executed just once. You have to build some kind of loop or rely on the tick events sent by the player to execute your code continuously.
The basic options are:
while (true) { doSomething() }
this will execute forever, but remember that the flashplayer is single threaded so while that runs everything else will be frozen, UI and user inputs included. this is only "good" if you are building some heavy-processing tool that has no need of interacting with the user.
setInterval(doSomething, 15000)
this creates an interval that will call your function every X milliseconds. This is the simplest option and probably what you're looking for.
addEventListener(Event.ENTER_FRAME, doSomething)
this registers a listener for the ENTER_FRAME event of the Flash Player, which will be dispatched 30 times per second (by default). Inside that function you can check the current time with getTimer() and decide if it's time to execute your logic.

Run NodeJS event loop / wait for child process to finish

I first tried a general description of the problem, then some more detail why the usual approaches don't work. If you would like to read these abstracted explanations go on. In the end I explain the greater problem and the specific application, so if you would rather read that, jump to "Actual application".
I am using a node.js child-process to do some computationally intensive work. The parent process does it's work but at some point in the execution it reaches a point where it must have the information from the child process before continuing. Therefore, I am looking for a way to wait for the child-process to finish.
My current setup looks somewhat like this:
importantDataCalculator = fork("./runtime");
importantDataCalculator.on("message", function (msg) {
if (msg.type === "result") {
importantData = msg.data;
} else if (msg.type === "error") {
importantData = null;
} else {
throw new Error("Unknown message from dataGenerator!");
}
});
and somewhere else
function getImportantData() {
while (importantData === undefined) {
// wait for the importantDataGenerator to finish
}
if (importantData === null) {
throw new Error("Data could not be generated.");
} else {
// we should have a proper data now
return importantData;
}
}
So when the parent process starts, it executes the first bit of code, spawning a child process to calculate the data and goes on doing it's own bit of work. When the time comes that it needs the result from the child process to continue it calls getImportantData(). So the idea is that getImportantData() blocks until the data is calculated.
However, the way I used doesn't work. I think this is due to me preventing the event loop from executing by using the while-loop. And since the Event-Loop does not execute no message from the child-process can be received and thus the condition of the while-loop can not change, making it an infinite loop.
Of course, I don't really want to use this kind of while-loop. What I would rather do is tell node.js "execute one iteration of the event loop, then get back to me". I would do this repeatedly, until the data I need was received and then continue the execution where I left of by returning from the getter.
I realize that his poses the danger of reentering the same function several times, but the module I want to use this in does almost nothing on the event loop except for waiting for this message from the child process and sending out other messages reporting it's progress, so that shouldn't be a problem.
Is there way to execute just one iteration of the event loop in Node.js? Or is there another way to achieve something similar? Or is there a completely different approach to achieve what I'm trying to do here?
The only solution I could think of so far is to change the calculation in such a way that I introduce yet another process. In this scenario, there would be the process calculating the important data, a process calculating the bits of data for which the important data is not needed and a parent process for these two, which just waits for data from the two child-processes and combines the pieces when they arrive. Since it does not have to do any computationally intensive work itself, it can just wait for events from the event loop (=messages) and react to them, forwarding the combined data as necessary and storing pieces of data that cannot be combined yet.
However this introduces yet another process and even more inter-process communication, which introduces more overhead, which I would like to avoid.
Edit
I see that more detail is needed.
The parent process (let's call it process 1) is itself a process spawned by another process (process 0) to do some computationally intensive work. Actually, it just executes some code over which I don't have control, so I cannot make it work asynchronously. What I can do (and have done) is make the code that is executed regularly call a function to report it's progress and provided partial results. This progress report is then send back to the original process via IPC.
But in rare cases the partial results are not correct, so they have to be modified. To do so I need some data I can calculate independently from the normal calculation. However, this calculation could take several seconds; thus, I start another process (process 2) to do this calculation and provide the result to process 1, via an IPC message. Now process 1 and 2 are happily calculating there stuff, and hopefully the corrective data calculated by process 2 is finished before process 1 needs it. But sometimes one of the early results of process 1 needs to be corrected and in that case I have to wait for process 2 to finish its calculation. Blocking the event loop of process 1 is theoretically not a problem, since the main process (process 0) would not be be affected by it. The only problem is, that by preventing the further execution of code in process 1 I am also blocking the event loop, which prevents it from ever receiving the result from process 2.
So I need to somehow pause the further execution of code in process 1 without blocking the event loop. I was hoping that there was a call like process.runEventLoopIteration that executes an iteration of the event loop and then returns.
I would then change the code like this:
function getImportantData() {
while (importantData === undefined) {
process.runEventLoopIteration();
}
if (importantData === null) {
throw new Error("Data could not be generated.");
} else {
// we should have a proper data now
return importantData;
}
}
thus executing the event loop until I have received the necessary data but NOT continuing the execution of the code that called getImportantData().
Basically what I'm doing in process 1 is this:
function callback(partialDataMessage) {
if (partialDataMessage.needsCorrection) {
getImportantData();
// use data to correct message
process.send(correctedMessage); // send corrected result to main process
} else {
process.send(partialDataMessage); // send unmodified result to main process
}
}
function executeCode(code) {
run(code, callback); // the callback will be called from time to time when the code produces new data
// this call is synchronous, run is blocking until the calculation is finished
// so if we reach this point we are done
// the only way to pause the execution of the code is to NOT return from the callback
}
Actual application/implementation/problem
I need this behaviour for the following application. If you have a better approach to achieve this feel free to propose it.
I want to execute arbitrary code and be notified about what variables it changes, what functions are called, what exceptions occur etc. I also need the location of these events in the code to be able to display the gathered information in the UI next to the original code.
To achieve this, I instrument the code and insert callbacks into it. I then execute the code, wrapping the execution in a try-catch block. Whenever the callback is called with some data about the execution (e.g. a variable change) I send a message to the main process telling it about the change. This way, the user is notified about the execution of the code, while it is running. The location information for the events generated by these callbacks is added to the callback call during the instrumentation, so that is not a problem.
The problem appears, when an exception occurs. I also want to notify the user about exceptions in the tested code. Therefore, I wrapped the execution of the code in a try-catch and any exceptions that get out of the execution are caught and send to the user interface. But the location of the errors is not correct. An Error object created by node.js has a complete call stack so it knows where it occurred. But this location if relative to the instrumented code, so I cannot use this location information as is, to display the error next to the original code. I need to transform this location in the instrumented code into a location in the original code. To do so, after instrumenting the code, I calculate a source map to map locations in the instrumented code to locations in the original code. However, this calculation might take several seconds. So, I figured, I would start a child process to calculate the source map, while the execution of the instrumented code is already started. Then, when an exception occurs, I check whether the source map has already been calculated, and if it hasn't I wait for the calculation to finish to be able to correct the location.
Since the code to be executed and watched can be completely arbitrary I cannot trivially rewrite it to be asynchronous. I only know that it calls the provided callback, because I instrumented the code to do so. I also cannot just store the message and return to continue the execution of the code, checking back during the next call whether the source map has been finished, because continuing the execution of the code would also block the event-loop, preventing the calculated source map from ever being received in the execution process. Or if it is received, then only after the code to execute has completely finished, which could be quite late or never (if the code to execute contains an infinite loop). But before I receive the sourceMap I cannot send further updates about the execution state. Combined, this means I would only be able to send the corrected progress messages after the code to execute has finished (which might be never) which completely defeats the purpose of the program (to enable the programmer to watch what the code does, while it executes).
Temporarily surrendering control to the event loop would solve this problem. However, that does not seem to be possible. The other idea I have is to introduce a third process which controls both the execution process and the sourceMapGeneration process. It receives progress messages from the execution process and if any of the messages needs correction it waits for the sourceMapGeneration process. Since the processes are independent, the controlling process can store the received messages and wait for the sourceMapGeneration process while the execution process continues executing, and as soon as it receives the source map, it corrects the messages and sends all of them off.
However, this would not only require yet another process (overhead) it also means I have to transfer the code once more between processes and since the code can have thousands of line that in itself can take some time, so I would like to move it around as little as possible.
I hope this explains, why I cannot and didn't use the usual "asynchronous callback" approach.
Adding a third ( :) ) solution to your problem after you clarified what behavior you seek I suggest using Fibers.
Fibers let you do co-routines in nodejs. Coroutines are functions that allow multiple entry/exit points. This means you will be able to yield control and resume it as you please.
Here is a sleep function from the official documentation that does exactly that, sleep for a given amount of time and perform actions.
function sleep(ms) {
var fiber = Fiber.current;
setTimeout(function() {
fiber.run();
}, ms);
Fiber.yield();
}
Fiber(function() {
console.log('wait... ' + new Date);
sleep(1000);
console.log('ok... ' + new Date);
}).run();
console.log('back in main');
You can place the code that does the waiting for the resource in a function, causing it to yield and then run again when the task is done.
For example, adapting your example from the question:
var pausedExecution, importantData;
function getImportantData() {
while (importantData === undefined) {
pausedExecution = Fiber.current;
Fiber.yield();
pausedExecution = undefined;
}
if (importantData === null) {
throw new Error("Data could not be generated.");
} else {
// we should have proper data now
return importantData;
}
}
function callback(partialDataMessage) {
if (partialDataMessage.needsCorrection) {
var theData = getImportantData();
// use data to correct message
process.send(correctedMessage); // send corrected result to main process
} else {
process.send(partialDataMessage); // send unmodified result to main process
}
}
function executeCode(code) {
// setup child process to calculate the data
importantDataCalculator = fork("./runtime");
importantDataCalculator.on("message", function (msg) {
if (msg.type === "result") {
importantData = msg.data;
} else if (msg.type === "error") {
importantData = null;
} else {
throw new Error("Unknown message from dataGenerator!");
}
if (pausedExecution) {
// execution is waiting for the data
pausedExecution.run();
}
});
// wrap the execution of the code in a Fiber, so it can be paused
Fiber(function () {
runCodeWithCallback(code, callback); // the callback will be called from time to time when the code produces new data
// this callback is synchronous and blocking,
// but it will yield control to the event loop if it has to wait for the child-process to finish
}).run();
}
Good luck! I always say it is better to solve one problem in 3 ways than solving 3 problems the same way. I'm glad we were able to work out something that worked for you. Admittingly, this was a pretty interesting question.
The rule of asynchronous programming is, once you've entered asynchronous code, you must continue to use asynchronous code. While you can continue to call the function over and over via setImmediate or something of the sort, you still have the issue that you're trying to return from an asynchronous process.
Without knowing more about your program, I can't tell you exactly how you should structure it, but by and large the way to "return" data from a process that involves asynchronous code is to pass in a callback; perhaps this will put you on the right track:
function getImportantData(callback) {
importantDataCalculator = fork("./runtime");
importantDataCalculator.on("message", function (msg) {
if (msg.type === "result") {
callback(null, msg.data);
} else if (msg.type === "error") {
callback(new Error("Data could not be generated."));
} else {
callback(new Error("Unknown message from sourceMapGenerator!"));
}
});
}
You would then use this function like this:
getImportantData(function(error, data) {
if (error) {
// handle the error somehow
} else {
// `data` is the data from the forked process
}
});
I talk about this in a bit more detail in one of my screencasts, Thinking Asynchronously.
What you are running into is a very common scenario that skilled programmers who are starting with nodejs often struggle with.
You're correct. You can't do this the way you are attempting (loop).
The main process in node.js is single threaded and you are blocking the event loop.
The simplest way to resolve this is something like:
function getImportantData() {
if(importantData === undefined){ // not set yet
setImmediate(getImportantData); // try again on the next event loop cycle
return; //stop this attempt
}
if (importantData === null) {
throw new Error("Data could not be generated.");
} else {
// we should have a proper data now
return importantData;
}
}
What we are doing, is that the function is re-attempting to process the data on the next iteration of the event loop using setImmediate.
This introduces a new problem though, your function returns a value. Since it will not be ready, the value you are returning is undefined. So you have to code reactively. You need to tell your code what to do when the data arrives.
This is typically done in node with a callback
function getImportantData(err,whenDone) {
if(importantData === undefined){ // not set yet
setImmediate(getImportantData.bind(null,whenDone)); // try again on the next event loop cycle
return; //stop this attempt
}
if (importantData === null) {
err("Data could not be generated.");
} else {
// we should have a proper data now
whenDone(importantData);
}
}
This can be used in the following way
getImportantData(function(err){
throw new Error(err); // error handling function callback
}, function(data){ //this is whenDone in our case
//perform actions on the important data
})
Your question (updated) is very interesting, it appears to be closely related to a problem I had with asynchronously catching exceptions. (Also Brandon and Ihad an interesting discussion with me about it! It's a small world)
See this question on how to catch exceptions asynchronously. The key concept is that you can use (assuming nodejs 0.8+) nodejs domains to constrain the scope of an exception.
This will allow you to easily get the location of the exception since you can surround asynchronous blocks with atry/catch. I think this should solve the bigger issue here.
You can find the relevant code in the linked question. The usage is something like:
atry(function() {
setTimeout(function(){
throw "something";
},1000);
}).catch(function(err){
console.log("caught "+err);
});
Since you have access to the scope of atry you can get the stack trace there which would let you skip the more complicated source-map usage.
Good luck!

Code coverage for async methods

When I analyse code coverage in Visual Studio 2012, any of the await lines in async methods are showing as not covered even though they are obviously executing since my tests are passing. The code coverage report says that the uncovered method is MoveNext, which is not present in my code (perhaps it's compiler-generated).
Is there a way to fix code coverage reporting for async methods?
Note:
I just ran coverage using NCover, and the coverage numbers make a lot more sense using that tool. As a workaround for now, I'll be switching to that.
This can happen most commonly if the operation you're awaiting is completed before it's awaited.
I recommend you test at least synchronous and asynchronous success situations, but it's also a good idea to test synchronous and asynchronous errors and cancellations.
The reason the code is not shown as being covered has to do with how async methods are implemented. The C# compiler actually translates the code in async methods into a class that implements a state machine, and transforms the original method into a stub that initialized and invokes that state machine. Since this code is generated in your assembly, it is included in the code coverage analysis.
If you use a task that is not complete at the time the code being covered is executing, the compiler-generated state machine hooks up a completion callback to resume when the task completes. This more completely exercises the state machine code, and results in complete code coverage (at least for statement-level code coverage tools).
A common way to get a task that is not complete at the moment, but will complete at some point is to use Task.Delay in your unit test. However, that is generally a poor option because the time delay is either too small (and results in unpredictable code coverage because sometimes the task is complete before the code being tests runs) or too large (unnecessarily slowing the tests down).
A better option is to use "await Task.Yield()". This will return immediately but invoke the continuation as soon as it is set.
Another option - though somewhat absurd - is to implement your own awaitable pattern that has the semantics of reporting incomplete until a continuation callback is hooked up, and then to immediately complete. This basically forces the state machine into the async path, providing the complete coverage.
To be sure, this is not a perfect solution. The most unfortunate aspect is that it requires modification to production code to address a limitation of a tool. I would much prefer that the code coverage tool ignore the portions of the async state machine that are generated by the compiler. But until that happens, there aren’t many options if you really want to try to get complete code coverage.
A more complete explanation of this hack can be found here: http://blogs.msdn.com/b/dwayneneed/archive/2014/11/17/code-coverage-with-async-await.aspx
There are situations where I don't care about testing the async nature of a method but just want to get rid of the partial code coverage. I use below extension method to avoid this and it works just fine for me.
Warning "Thread.Sleep" used here!
public static IReturnsResult<TClass> ReturnsAsyncDelayed<TClass, TResponse>(this ISetup<TClass, Task<TResponse>> setup, TResponse value) where TClass : class
{
var completionSource = new TaskCompletionSource<TResponse>();
Task.Run(() => { Thread.Sleep(200); completionSource.SetResult(value); });
return setup.Returns(completionSource.Task);
}
and the usage is similar to the Moq's ReturnsAsync Setup.
_sampleMock.Setup(s => s.SampleMethodAsync()).ReturnsAsyncDelayed(response);
I created a test runner that runs a block of code multiple times and varies the task that is delayed using a factory. This is great for testing the different paths through simple blocks of code. For more complex paths you may want to create a test per path.
[TestMethod]
public async Task ShouldTestAsync()
{
await AsyncTestRunner.RunTest(async taskFactory =>
{
this.apiRestClient.GetAsync<List<Item1>>(NullString).ReturnsForAnyArgs(taskFactory.Result(new List<Item1>()));
this.apiRestClient.GetAsync<List<Item2>>(NullString).ReturnsForAnyArgs(taskFactory.Result(new List<Item2>()));
var items = await this.apiController.GetAsync();
this.apiRestClient.Received().GetAsync<List<Item1>>(Url1).IgnoreAwait();
this.apiRestClient.Received().GetAsync<List<Item2>>(Url2).IgnoreAwait();
Assert.AreEqual(0, items.Count(), "Zero items should be returned.");
});
}
public static class AsyncTestRunner
{
public static async Task RunTest(Func<ITestTaskFactory, Task> test)
{
var testTaskFactory = new TestTaskFactory();
while (testTaskFactory.NextTestRun())
{
await test(testTaskFactory);
}
}
}
public class TestTaskFactory : ITestTaskFactory
{
public TestTaskFactory()
{
this.firstRun = true;
this.totalTasks = 0;
this.currentTestRun = -1; // Start at -1 so it will go to 0 for first run.
this.currentTaskNumber = 0;
}
public bool NextTestRun()
{
// Use final task number as total tasks.
this.totalTasks = this.currentTaskNumber;
// Always return has next as turn for for first run, and when we have not yet delayed all tasks.
// We need one more test run that tasks for if they all run sync.
var hasNext = this.firstRun || this.currentTestRun <= this.totalTasks;
// Go to next run so we know what task should be delayed,
// and then reset the current task number so we start over.
this.currentTestRun++;
this.currentTaskNumber = 0;
this.firstRun = false;
return hasNext;
}
public async Task<T> Result<T>(T value, int delayInMilliseconds = DefaultDelay)
{
if (this.TaskShouldBeDelayed())
{
await Task.Delay(delayInMilliseconds);
}
return value;
}
private bool TaskShouldBeDelayed()
{
var result = this.currentTaskNumber == this.currentTestRun - 1;
this.currentTaskNumber++;
return result;
}
public async Task VoidResult(int delayInMilliseconds = DefaultDelay)
{
// If the task number we are on matches the test run,
// make it delayed so we can cycle through them.
// Otherwise this task will be complete when it is reached.
if (this.TaskShouldBeDelayed())
{
await Task.Delay(delayInMilliseconds);
}
}
public async Task<T> FromResult<T>(T value, int delayInMilliseconds = DefaultDelay)
{
if (this.TaskShouldBeDelayed())
{
await Task.Delay(delayInMilliseconds);
}
return value;
}
}

How to optimize tests validating asynchronous code?

We are developing a WPF application using TDD. As we're already working on this solution for almost two years, we've written a huge bunch of tests (almost 2000 Unittests right now).
There are some classes, that need to implement functionality multithreaded and asynchronously. For example a communication-component that can both send and receive messages and parse them. The dependencies are always mocked using RhinoMocks.
Our Test-Methods targeting these classes look very similar, as following:
[TestMethod]
public void Method_Description_ExpectedResult(){
// Arrange
var myStub = MockRepository.GenerateStub<IMyStub>();
var target = new MyAsynchronousClass(myStub);
// Act
var target.Send("Foo");
Thread.Sleep(200);
//Assert
myStub.AssertWasCalled(x => x.Bar("Foo"));
}
As you can see, this test runs at least for 200 ms due to the Thread.Sleep(). We optimized the test replacing the AssertWasCalled with a active polling method, s.th. like this:
public static bool True(Func<bool> condition, int times, int waitTime)
{
for (var i = 0; i < times; i++)
{
if (condition())
return true;
Thread.Sleep(waitTime);
}
return condition();
}
We can now use this WaitFor.True(...) Method by changing the AssertWasCalled to:
var fooTriggered = false;
myStub.Stub(x => x.Bar("Foo")).Do((Action)(() => fooTriggered = true)));
WaitFor.True(() => fooTriggered, 20, 20);
Assert.IsTrue(fooTriggered);
This construct will terminate earlier if the condition matches, but anyway - this takes too long for us. Running all of our 2000 Tests need about 5 Minutes (building and running them).
Is there any smart trick how we could optimize code like this?
You can use a monitor. I'm making this up so please excuse me if it isn't quite compiling, but it'll look something like:
[TestMethod]
public void Method_Description_ExpectedResult(){
// Arrange
var waitingRoom = new object();
var myStub = MockRepository.GenerateStub<IMyStub>();
myStub.Setup(x => x.Bar("Foo")).Callback(x =>
{
Monitor.Enter(waitingRoom);
Monitor.Pulse(waitingRoom);
Monitor.Exit(waitingRoom);
}
var target = new MyAsynchronousClass(myStub);
// Act
Monitor.Enter(waitingRoom);
target.Send("Foo");
Monitor.Wait(waitingRoom);
Monitor.Exit(waitingRoom);
//Assert
myStub.AssertWasCalled(x => x.Bar("Foo"));
}
Code written within the Monitor can't run until it's free. The test will cause the acting thread to wait until Monitor.Wait has been called. Then the callback can enter and pulse the Monitor. The test then "wakes up", and once the callback has exited the monitor, it gets control back and exits too, allowing you to Assert.
The only thing I haven't covered is that if Bar("Foo") doesn't get called it will hang, so you might want to have a timer pulse the thread too.
You can create a class which does the complex monitoring bits for you if you use it a lot. This is one I wrote to deal with asynchronous checks in UI automation; adapting it for what you're doing might help you.

Resources