Finding the original position of a point on an image after rotation - geometry

I have the x, y co-ordinates of a point on a rotated image by certain angle. I want to find the co-ordinates of the same point in the original, non-rotated image.
Please check the first image which is simpler:
UPDATED image, SIMPLIFIED:
OLD image:

Let's say the first point is A, the second is B and the last is C. I assume you have the rotation matrice R (see Wikipedia Rotation Matrix if not) et the translation vector t, so that B = R*A and C = B+t.
It comes C = R*A + t, and so A = R^1*(C-t).
Edit: If you only need the non rotated new point, simply do D = R^-1*C.

First thing to do is defining the reference system (how "where the points lies with respect to each image" will be translated into numbers). I guess that you want to rely on a basic 2D reference system, given by a single point (a couple of X/Y values). For example: left/lower corner (min. X and min. Y).
The algorithm is pretty straightforward:
Getting the new defining reference point associated with the
rotated shape (min. X and min. Y), that is, determining RefX_new and
RefY_new.
Applying a basic conversion between reference systems:
X_old = X_new + (RefX_new - RefX_old)
Y_old = Y_new + (RefY_new -
RefY_old)
----------------- UPDATE TO RELATE FORMULAE TO NEW CAR PIC
RefX_old = min X value of the CarFrame before being rotated.
RefY_old = max Y value of the CarFrame before being rotated.
RefX_new = min X value of the CarFrame after being rotated.
RefY_new = max Y value of the CarFrame after being rotated.
X_new = X of the point with respect to the CarFrame after being rotated. For example: if RefX_new = 5 with respect to absolute frame (0,0) and X of the point with respect to this absolute frame is 8, X_new would be 3.
Y_new = Y of the point with respect to CarFrame after being rotated (equivalently to point above)
X_old_C = X_new_C(respect to CarFrame) + (RefX_new(CarFrame_C) - RefX_old(CarFrame_A))
Y_old_C = Y_new_C(respect to CarFrame) + (RefY_new(CarFrame_C) - RefY_old(CarFrame_A))
These coordinates are respect to the CarFrame and thus you might have to update them with respect to the absolute frame (0,0, I guess), as explained above, that is:
X_old_D_absolute_frame = X_old_C + (RefX_new(CarFrame_C) + RefX_global(i.e., 0))
Y_old_D_absolute_frame = Y_old_C + (RefY_new(CarFrame_C) + RefY_global(i.e., 0))
(Although you should do that once the CarFrame is in its "definitive position" with respect to the global frame, that is, on picture D (the point has the same coordinates with respect to the CarFrame in both picture C and D, but different ones with respect to the global frame).)
It might seem a bit complex put in this way; but it is really simple. You have just to think carefully about one case and create the algorithm performing all the actions. The idea is extremely simple: if I am on 8 inside something which starts in 5; I am on 3 with respect to the container.
------------ UPDATE IN THE METHODOLOGY
As said in the comment, these last pictures prove that the originally-proposed calculation of reference (max. Y/min. X) is not right: it shouldn't be the max./min. values of the carFrame but the minimum distances to the closer sides (= perpendicular line from the left/bottom side to the point).
------------ TRIGONOMETRIC CALCS FOR THE SPECIFIC EXAMPLE
The algorithm proposed is the one you should apply in any situation. Although in this specific case, the most difficult part is not moving from one reference system to the other, but defining the reference point in the rotated system. Once this is done, the application to the non-rotated case is immediate.
Here you have some calcs to perform this action (I have done it pretty quickly, thus better take it as an orientation and do it by your own); also I have only considered the case in the pictures, that is, rotation over the left/bottom point:
X_rotated = dx * Cos(alpha)
where dx = X_orig - (max_Y_CarFrame - Y_Orig) * Tan(alpha)
Y_rotated = dy * Cos(alpha)
where dy = Y_orig - X_orig * Tan(alpha)
NOTE: (max_Y_CarFrame - Y_Orig) in dx and X_orig in dy expect that the basic reference system is 0,0 (min. X and min. Y). If this is not the case, you would have to change this variables.
The X_rotated and Y_rotated give the perpendicular distance from the point to the closest side of the carFrame (respectively, left and bottom side). By applying these formulae (I insist: analyse them carefully), you get the X_old_D_absolute_frame/Y_old_D_absolute_frame that is, you have just to add the lef/bottom values from the carFrame (if it is located in 0,0, these would be the final values).

Related

How to match a geometric template of 2D boxes to fit another set of 2D boxes

I'm trying to find a match between a set of 2D boxes with coordinates (A) (from a template with known sizes and distances between boxes) to another set of 2D boxes with coordinates (B) (which may contain more boxes than A). They should match in terms of each box from A corresponds to a single Box in B. The boxes in A together form a "stamp" which is assymmetrical in atleast one dimension.
Illustration of problem
explanation: "Stanz" in the illustration is a box from set A.
One might even think of the Set A as only 2D points (the centerpoint of the box) to make it simpler.
The end result will be to know which A box corresponds to which B box.
I can only think of very specific ways of doing this, tailored to a specific layout of boxes, is there any known generic ways of dealing with this forms of matching/search problems and what are they called?
Edit: Possible solution
I have come up with one possible solution, looking for all the possible rotations at each possible B center position for a single box from set A. Here all of the points in A would be rotated and compared against the distance to B centers. Not sure if this is a good way.
Looking for the possible rotations at each B centerpoint- solution
In your example, the transformation between the template and its presence in B can be entirely defined (actually, over-defined) by two matching points.
So here's a simple approach which is kind of performant. First, put all the points in B into a kD-tree. Now, pick a canonical "first" point in A, and hypothesize matching it to each of the points in B. To check whether it matches a particular point in B, pick a canonical "second" point in A and measure its distance to the "first" point. Then, use a standard kD proximity-bounding query to find all the points in B which are roughly that distance from your hypothesized matched "first" point in B. For each of those, determine the transformation between A and B, and for each of the other points in A, determine whether there's a point in A at roughly the right place (again, using the kD-tree), early-outing with the first unmatched point.
The worst-case performance there can get quite bad with pathological cases (O(n^3 log n), I think) but in general I would expect roughly O(n log n) for well-behaved data with a low threshold. Note that the thresholding is a bit rough-and-ready, and the results can depend on your choice of "first" and "second" points.
This is more of an idea than an answer, but it's too long for a comment. I asked some additional questions in a comment above, but the answers may not be particular relevant, so I'll go ahead and offer some thoughts in the meantime.
As you may know, point matching is its own problem domain, and if you search for 'point matching algorithm', you'll find various articles, papers, and other resources. It seems though that an ad hoc solution might be appropriate here (one that's simpler than more generic algorithms that are available).
I'll assume that the input point set can only be rotated, and not also flipped. If this idea were to work though, it should also work with flipping - you'd just have to run the algorithm separately for each flipped configuration.
In your example image, you've matched a point from set A with a point from set B so that they're coincident. Call this shared point the 'anchor' point. You'd need to do this for every combination of a point from set A and a point from set B until you found a match or exhausted the possibilities. The problem then is to determine if a match can be made given one of these matched point pairs.
It seems that for a given anchor point, a necessary but not sufficient condition for a match is that a point from set A and a point from set B can be found that are approximately the same distance from the anchor point. (What 'approximately' means would depend on the input, and would need to be tuned appropriately given that you're using integers.) This condition is met in your example image in that the center point of each point set is (approximately) the same distance from the anchor point. (Note that there could be multiple pairs of points that meet this condition, in which case you'd have to examine each such pair in turn.)
Once you have such a pair - the center points in your example - you can use some simple trigonometry and linear algebra to rotate set A so that the points in the pair coincide, after which the two point sets are locked together at two points and not just one. In your image that would involve rotating set A about 135 degrees clockwise. Then you check to see if every point in set B has a point in set A with which it's coincident, to within some threshold. If so, you have a match.
In your example, this fails of course, because the rotation is not actually a match. Eventually though, if there's a match, you'll find the anchor point pair for which the test succeeds.
I realize this would be easier to explain with some diagrams, but I'm afraid this written explanation will have to suffice for the moment. I'm not positive this would work - it's just an idea. And maybe a more generic algorithm would be preferable. But, if this did work, it might have the advantage of being fairly straightforward to implement.
[Edit: Perhaps I should add that this is similar to your solution, except for the additional step to allow for only testing a subset of the possible rotations.]
[Edit: I think a further refinement may be possible here. If, after choosing an anchor point, matching is possible via rotation, it should be the case that for every point p in B there's a point in A that's (approximately) the same distance from the anchor point as p is. Again, it's a necessary but not sufficient condition, but it allows you to quickly eliminate cases where a match isn't possible via rotation.]
Below follows a finished solution in python without kD-tree and without early outing candidates. A better way is to do the implementation yourself according to Sneftel but if you need anything quick and with a plot this might be useful.
Plot shows the different steps, starts off with just the template as a collection of connected lines. Then it is translated to a point in B where the distances between A and B points fits the best. Finally it is rotated.
In this example it was important to also match up which of the template positions was matched to which boundingbox position, so its an extra step in the end. There might be some deviations in the code compared to the outline above.
import numpy as np
import random
import math
import matplotlib.pyplot as plt
def to_polar(pos_array):
x = pos_array[:, 0]
y = pos_array[:, 1]
length = np.sqrt(x ** 2 + y ** 2)
t = np.arctan2(y, x)
zip_list = list(zip(length, t))
array_polar = np.array(zip_list)
return array_polar
def to_cartesian(pos):
# first element radius
# second is angle(theta)
# Converting polar to cartesian coordinates
radius = pos[0]
theta = pos[1]
x = radius * math.cos(theta)
y = radius * math.sin(theta)
return x,y
def calculate_distance_points(p1,p2):
return np.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
def find_closest_point_inx(point, neighbour_set):
shortest_dist = None
closest_index = -1
# Find the point in the secondary array that is the closest
for index,curr_neighbour in enumerate(neighbour_set):
distance = calculate_distance_points(point, curr_neighbour)
if shortest_dist is None or distance < shortest_dist:
shortest_dist = distance
closest_index = index
return closest_index
# Find the sum of distances between each point in primary to the closest one in secondary
def calculate_agg_distance_arrs(primary,secondary):
total_distance = 0
for point in primary:
closest_inx = find_closest_point_inx(point, secondary)
dist = calculate_distance_points(point, secondary[closest_inx])
total_distance += dist
return total_distance
# returns a set of <primary_index,neighbour_index>
def pair_neighbours_by_distance(primary_set, neighbour_set, distance_limit):
pairs = {}
for num, point in enumerate(primary_set):
closest_inx = find_closest_point_inx(point, neighbour_set)
if calculate_distance_points(neighbour_set[closest_inx], point) > distance_limit:
closest_inx = None
pairs[num]=closest_inx
return pairs
def rotate_array(array, angle,rot_origin=None):
if rot_origin is not None:
array = np.subtract(array,rot_origin)
# clockwise rotation
theta = np.radians(angle)
c, s = np.cos(theta), np.sin(theta)
R = np.array(((c, -s), (s, c)))
rotated = np.matmul(array, R)
if rot_origin is not None:
rotated = np.add(rotated,rot_origin)
return rotated
# Finds out a point in B_set and a rotation where the points in SetA have the best alignment towards SetB.
def find_stamp_rotation(A_set, B_set):
# Step 1
anchor_point_A = A_set[0]
# Step 2. Convert all points to polar coordinates with anchor as origin
A_anchor_origin = A_set - anchor_point_A
anchor_A_polar = to_polar(A_anchor_origin)
print(anchor_A_polar)
# Step 3 for each point in B
score_tuples = []
for num_anchor, B_anchor_point_try in enumerate(B_set):
# Step 3.1
B_origin_rel_point = B_set-B_anchor_point_try
B_polar_rp_origin = to_polar(B_origin_rel_point)
# Step 3.3 select arbitrary point q from Ap
point_Aq = anchor_A_polar[1]
# Step 3.4 test each rotation, where pointAq is rotated to each B-point (except the B anchor point)
for try_rot_point_B in [B_rot_point for num_rot, B_rot_point in enumerate(B_polar_rp_origin) if num_rot != num_anchor]:
# positive rotation is clockwise
# Step 4.1 Rotate Ap by the angle between q and n
angle_to_try = try_rot_point_B[1]-point_Aq[1]
rot_try_arr = np.copy(anchor_A_polar)
rot_try_arr[:,1]+=angle_to_try
cart_rot_try_arr = [to_cartesian(e) for e in rot_try_arr]
cart_B_rp_origin = [to_cartesian(e) for e in B_polar_rp_origin]
distance_score = calculate_agg_distance_arrs(cart_rot_try_arr, cart_B_rp_origin)
score_tuples.append((B_anchor_point_try,angle_to_try,distance_score))
# Step 4.3
lowest=None
for b_point,angle,distance in score_tuples:
print("point:{} angle(rad):{} distance(sum):{}".format(b_point,360*(angle/(2*math.pi)),distance))
if lowest is None or distance < lowest[2]:
lowest = b_point, 360*angle/(2*math.pi), distance
return lowest
def test_example():
ax = plt.subplot()
ax.grid(True)
plt.title('Fit Template to BBoxes by translation and rotation')
plt.xlim(-20, 20)
plt.ylim(-20, 20)
ax.set_xticks(range(-20,20), minor=True)
ax.set_yticks(range(-20,20), minor=True)
template = np.array([[-10,-10],[-10,10],[0,0],[10,-10],[10,10], [0,20]])
# Test Bboxes are Rotated 40 degree, translated 2,2
rotated = rotate_array(template,40)
rotated = np.subtract(rotated,[2,2])
# Adds some extra bounding boxes as noise
for i in range(8):
rotated = np.append(rotated,[[random.randrange(-20,20), random.randrange(-20,20)]],axis=0)
# Scramble entries in array and return the position change.
rnd_rotated = rotated.copy()
np.random.shuffle(rnd_rotated)
element_positions = []
# After shuffling, looks at which index the "A"-marks has ended up at. For later comparison to see that the algo found the correct answer.
# This is to represent the actual case, where I will get a bunch of unordered bboxes.
rnd_map = {}
indexes_translation = [num2 for num,point in enumerate(rnd_rotated) for num2,point2 in enumerate(rotated) if point[0]==point2[0] and point[1]==point2[1]]
for num,inx in enumerate(indexes_translation):
rnd_map[num]=inx
# algo part 1/3
b_point,angle,_ = find_stamp_rotation(template,rnd_rotated)
# Plot for visualization
legend_list = np.empty((0,2))
leg_template = plt.plot(template[:,0],template[:,1],c='r')
legend_list = np.append(legend_list,[[leg_template[0],'1. template-pattern']],axis=0)
leg_bboxes = plt.scatter(rnd_rotated[:,0],rnd_rotated[:,1],c='b',label="scatter")
legend_list = np.append(legend_list,[[leg_bboxes,'2. bounding boxes']],axis=0)
leg_anchor = plt.scatter(b_point[0],b_point[1],c='y')
legend_list = np.append(legend_list,[[leg_anchor,'3. Discovered bbox anchor point']],axis=0)
# algo part 2/3
# Superimpose A onto B by A[0] to b_point
offset = b_point - template[0]
super_imposed_A = template + offset
# Plot superimposed, but not yet rotated
leg_s_imposed = plt.plot(super_imposed_A[:,0],super_imposed_A[:,1],c='k')
#plt.legend(rubberduckz, "superimposed template on anchor")
legend_list = np.append(legend_list,[[leg_s_imposed[0],'4. Templ superimposed on Bbox']],axis=0)
print("Superimposed A on B by A[0] to {}".format(b_point))
print(super_imposed_A)
# Rotate, now the template should match pattern of bboxes
# algo part 3/4
super_imposed_rotated_A = rotate_array(super_imposed_A,-angle,rot_origin=super_imposed_A[0])
# Show the beautiful match in a last plot
leg_s_imp_rot = plt.plot(super_imposed_rotated_A[:,0],super_imposed_rotated_A[:,1],c='g')
legend_list = np.append(legend_list,[[leg_s_imp_rot[0],'5. final fit']],axis=0)
plt.legend(legend_list[:,0], legend_list[:,1],loc="upper left")
plt.show()
# algo part 4/4
pairs = pair_neighbours_by_distance(super_imposed_rotated_A, rnd_rotated, 10)
print(pairs)
for inx in range(len(pairs)):
bbox_num = pairs[inx]
print("template id:{}".format(inx))
print("bbox#id:{}".format(bbox_num))
#print("original_bbox:{}".format(rnd_map[bbox_num]))
if __name__ == "__main__":
test_example()
Result on actual image with bounding boxes. Here it can be seen that the scaling is incorrect which makes the template a bit off but it will still be able to pair up and thats the desired end-result in my case.

Making a Bezier curve based on 3 points the line will intersect

A quadratic bezier curve needs these three points, but I do not have an ordered pair of p1. Instead, I have the ordered pair of points here
The middle point (P1) is the highest point of the parabola.
The parabola is equal in both sides
How do I get the 3 points from image 1 using the points from image 2?
Apply the knowledge explained in https://pomax.github.io/bezierinfo/#abc and you should be good to go. You'll need to decide which time value that "somewhere on the curve" point has, and then you can use the formula for the projection ratio to find the actual control point coordinate.
However, at t=0.5 the ratio is just "1:1" so things get even easier because your point projects onto the midpoint of the line that connects that first and last point, and the real control point is the same distance "above" your point as the point is above that line:
So you just compute the midpoint:
m =
x: (p1.x + p2.x) / 2
y: (p1.y + p2.y) / 2
and the x and y distance to the midpoint from the "p2 you have" point:
d =
x: (p2.x - m.x)
y: (p2.y - m.y)
and then the real p2 is simply that distance away from the "p2 you have":
real2 =
x: p2.x + d.x
y: p2.y + d.y
However, note that this only works for t=0.5: both that projected point on the start--end line and the distance ratios will be (possibly very) different for any other t value and you should use the formula that the Bezier primer talks about.
Also note that what you call "the peak" is in no way guaranteed to be at t=0.5... for example, have a look at this curve:
The point that is marked as belonging to t=0.5 is certainly not where you would say the "peak" of the curve is (in fact, that's closer to t=0.56), so if all you have is three points, you technically always have incomplete information and you're going to have to invent some rule for deciding how to fill in the missing bits. In this case "what t value do I consider my somewhere-on-the-curve point to be?".

How do I QUICKLY find the closest intersection in 2D between a ray and m polylines?

How do I find the closest intersection in 2D between a ray:
x = x0 + t*cos(a), y = y0 + t*sin(a)
and m polylines:
{(x1,y1), (x2,y2), ..., (xn,yn)}
QUICKLY?
I started by looping trough all linesegments and for each linesegment;
{(x1,y1),(x2,y2)} solving:
x1 + u*(x2-x1) = x0 + t*cos(a)
y1 + u*(y2-y1) = y0 + t*sin(a)
by Cramer's rule, and afterward sorting the intersections on distance, but that was slow :-(
BTW: the polylines happens to be monotonically increasing in x.
Coordinate system transformation
I suggest you first transform your setup to something with easier coordinates:
Take your point p = (x, y).
Move it by (-x0, -y0) so that the ray now starts at the center.
Rotate it by -a so that the ray now lies on the x axis.
So far the above operations have cost you four additions and four multiplications per point:
ca = cos(a) # computed only once
sa = sin(a) # likewise
x' = x - x0
y' = y - y0
x'' = x'*ca + y'*sa
y'' = y'*ca - x'*sa
Checking for intersections
Now you know that a segment of the polyline will only intersect the ray if the sign of its y'' value changes, i.e. y1'' * y2'' < 0. You could even postpone the computation of the x'' values until after this check. Furthermore, the segment will only intersect the ray if the intersection of the segment with the x axis occurs for x > 0, which can only happen if either value is greater than zero, i.e. x1'' > 0 or x2'' > 0. If both x'' are greater than zero, then you know there is an intersection.
The following paragraph is kind of optional, don't worry if you don't understand it, there is an alternative noted later on.
If one x'' is positive but the other is negative, then you have to check further. Suppose that the sign of y'' changed from negative to positive, i.e. y1'' < 0 < y2''. The line from p1'' to p2'' will intersect the x axis at x > 0 if and only if the triangle formed by p1'', p2'' and the origin is oriented counter-clockwise. You can determine the orientation of that triangle by examining the sign of the determinant x1''*y2'' - x2''*y1'', it will be positive for a counter-clockwise triangle. If the direction of the sign change is different, the orientation has to be different as well. So to take this together, you can check whether
(x1'' * y2'' - x2'' * y1'') * y2'' > 0
If that is the case, then you have an intersection. Notice that there were no costly divisions involved so far.
Computing intersections
As you want to not only decide whether an intersection exists, but actually find a specific one, you now have to compute that intersection. Let's call it p3. It must satisfy the equations
(x2'' - x3'')/(y2'' - y3'') = (x1'' - x3'')/(y1'' - y3'') and
y3'' = 0
which results in
x3'' = (x1'' * y1'' - x2'' * y2'')/(y1'' - y2'')
Instead of the triangle orientation check from the previous paragraph, you could always compute this x3'' value and discard any results where it turns out to be negative. Less code, but more divisions. Benchmark if in doubt about performance.
To find the point closest to the origin of the ray, you take the result with minimal x3'' value, which you can then transform back into its original position:
x3 = x3''*ca + x0
y3 = x3''*sa + y0
There you are.
Note that all of the above assumed that all numbers were either positive or negative. If you have zeros, it depends on the exact interpretation of what you actually want to compute, how you want to handle these border cases.
To avoid checking intersection with all segments, some space partition is needed, like Quadtree, BSP tree. With space partition it is needed to check ray intersection with space partitions.
In this case, since points are sorted by x-coordinate, it is possible to make space partition with boxes (min x, min y)-(max x, max y) for parts of polyline. Root box is min-max of all points, and it is split in 2 boxes for first and second part of a polyline. Number of segments in parts is same or one box has one more segment. This box splitting is done recursively until only one segment is in a box.
To check ray intersection start with root box and check is it intersected with a ray, if it is than check 2 sub-boxes for an intersection and first test closer sub-box then farther sub-box.
Checking ray-box intersection is checking if ray is crossing axis aligned line between 2 positions. That is done for 4 box boundaries.

Best fit square to quadrilateral

I've got a shape consisting of four points, A, B, C and D, of which the only their position is known. The goal is to transform these points to have specific angles and offsets relative to each other.
For example: A(-1,-1) B(2,-1) C(1,1) D(-2,1), which should be transformed to a perfect square (all angles 90) with offsets between AB, BC, CD and AD all being 2. The result should be a square slightly rotated counter-clockwise.
What would be the most efficient way to do this?
I'm using this for a simple block simulation program.
As Mark alluded, we can use constrained optimization to find the side 2 square that minimizes the square of the distance to the corners of the original.
We need to minimize f = (a-A)^2 + (b-B)^2 + (c-C)^2 + (d-D)^2 (where the square is actually a dot product of the vector argument with itself) subject to some constraints.
Following the method of Lagrange multipliers, I chose the following distance constraints:
g1 = (a-b)^2 - 4
g2 = (c-b)^2 - 4
g3 = (d-c)^2 - 4
and the following angle constraints:
g4 = (b-a).(c-b)
g5 = (c-b).(d-c)
A quick napkin sketch should convince you that these constraints are sufficient.
We then want to minimize f subject to the g's all being zero.
The Lagrange function is:
L = f + Sum(i = 1 to 5, li gi)
where the lis are the Lagrange multipliers.
The gradient is non-linear, so we have to take a hessian and use multivariate Newton's method to iterate to a solution.
Here's the solution I got (red) for the data given (black):
This took 5 iterations, after which the L2 norm of the step was 6.5106e-9.
While Codie CodeMonkey's solution is a perfectly valid one (and a great use case for the Lagrangian Multipliers at that), I believe that it's worth mentioning that if the side length is not given this particular problem actually has a closed form solution.
We would like to minimise the distance between the corners of our fitted square and the ones of the given quadrilateral. This is equivalent to minimising the cost function:
f(x1,...,y4) = (x1-ax)^2+(y1-ay)^2 + (x2-bx)^2+(y2-by)^2 +
(x3-cx)^2+(y3-cy)^2 + (x4-dx)^2+(y4-dy)^2
Where Pi = (xi,yi) are the corners of the fitted square and A = (ax,ay) through D = (dx,dy) represent the given corners of the quadrilateral in clockwise order. Since we are fitting a square we have certain contraints regarding the positions of the four corners. Actually, if two opposite corners are given, they are enough to describe a unique square (save for the mirror image on the diagonal).
Parametrization of the points
This means that two opposite corners are enough to represent our target square. We can parametrise the two remaining corners using the components of the first two. In the above example we express P2 and P4 in terms of P1 = (x1,y1) and P3 = (x3,y3). If you need a visualisation of the geometrical intuition behind the parametrisation of a square you can play with the interactive version.
P2 = (x2,y2) = ( (x1+x3-y3+y1)/2 , (y1+y3-x1+x3)/2 )
P4 = (x4,y4) = ( (x1+x3+y3-y1)/2 , (y1+y3+x1-x3)/2 )
Substituting for x2,x4,y2,y4 means that f(x1,...,y4) can be rewritten to:
f(x1,x3,y1,y3) = (x1-ax)^2+(y1-ay)^2 + ((x1+x3-y3+y1)/2-bx)^2+((y1+y3-x1+x3)/2-by)^2 +
(x3-cx)^2+(y3-cy)^2 + ((x1+x3+y3-y1)/2-dx)^2+((y1+y3+x1-x3)/2-dy)^2
a function which only depends on x1,x3,y1,y3. To find the minimum of the resulting function we then set the partial derivatives of f(x1,x3,y1,y3) equal to zero. They are the following:
df/dx1 = 4x1-dy-dx+by-bx-2ax = 0 --> x1 = ( dy+dx-by+bx+2ax)/4
df/dx3 = 4x3+dy-dx-by-bx-2cx = 0 --> x3 = (-dy+dx+by+bx+2cx)/4
df/dy1 = 4y1-dy+dx-by-bx-2ay = 0 --> y1 = ( dy-dx+by+bx+2ay)/4
df/dy3 = 4y3-dy-dx-2cy-by+bx = 0 --> y3 = ( dy+dx+by-bx+2cy)/4
You may see where this is going, as simple rearrangment of the terms leads to the final solution.
Final solution

Projective transformation

Given two image buffers (assume it's an array of ints of size width * height, with each element a color value), how can I map an area defined by a quadrilateral from one image buffer into the other (always square) image buffer? I'm led to understand this is called "projective transformation".
I'm also looking for a general (not language- or library-specific) way of doing this, such that it could be reasonably applied in any language without relying on "magic function X that does all the work for me".
An example: I've written a short program in Java using the Processing library (processing.org) that captures video from a camera. During an initial "calibrating" step, the captured video is output directly into a window. The user then clicks on four points to define an area of the video that will be transformed, then mapped into the square window during subsequent operation of the program. If the user were to click on the four points defining the corners of a door visible at an angle in the camera's output, then this transformation would cause the subsequent video to map the transformed image of the door to the entire area of the window, albeit somewhat distorted.
Using linear algebra is much easier than all that geometry! Plus you won't need to use sine, cosine, etc, so you can store each number as a rational fraction and get the exact numerical result if you need it.
What you want is a mapping from your old (x,y) co-ordinates to your new (x',y') co-ordinates. You can do it with matrices. You need to find the 2-by-4 projection matrix P such that P times the old coordinates equals the new co-ordinates. We'll assume that you're mapping lines to lines (not, for instance, straight lines to parabolas). Because you have a projection (parallel lines don't stay parallel) and translation (sliding), you need a factor of (xy) and (1), too. Drawn as matrices:
[x ]
[a b c d]*[y ] = [x']
[e f g h] [x*y] [y']
[1 ]
You need to know a through h so solve these equations:
a*x_0 + b*y_0 + c*x_0*y_0 + d = i_0
a*x_1 + b*y_1 + c*x_1*y_1 + d = i_1
a*x_2 + b*y_2 + c*x_2*y_2 + d = i_2
a*x_3 + b*y_3 + c*x_3*y_3 + d = i_3
e*x_0 + f*y_0 + g*x_0*y_0 + h = j_0
e*x_1 + f*y_1 + g*x_1*y_1 + h = j_1
e*x_2 + f*y_2 + g*x_2*y_2 + h = j_2
e*x_3 + f*y_3 + g*x_3*y_3 + h = j_3
Again, you can use linear algebra:
[x_0 y_0 x_0*y_0 1] [a e] [i_0 j_0]
[x_1 y_1 x_1*y_1 1] * [b f] = [i_1 j_1]
[x_2 y_2 x_2*y_2 1] [c g] [i_2 j_2]
[x_3 y_3 x_3*y_3 1] [d h] [i_3 j_3]
Plug in your corners for x_n,y_n,i_n,j_n. (Corners work best because they are far apart to decrease the error if you're picking the points from, say, user-clicks.) Take the inverse of the 4x4 matrix and multiply it by the right side of the equation. The transpose of that matrix is P. You should be able to find functions to compute a matrix inverse and multiply online.
Where you'll probably have bugs:
When computing, remember to check for division by zero. That's a sign that your matrix is not invertible. That might happen if you try to map one (x,y) co-ordinate to two different points.
If you write your own matrix math, remember that matrices are usually specified row,column (vertical,horizontal) and screen graphics are x,y (horizontal,vertical). You're bound to get something wrong the first time.
EDIT
The assumption below of the invariance of angle ratios is incorrect. Projective transformations instead preserve cross-ratios and incidence. A solution then is:
Find the point C' at the intersection of the lines defined by the segments AD and CP.
Find the point B' at the intersection of the lines defined by the segments AD and BP.
Determine the cross-ratio of B'DAC', i.e. r = (BA' * DC') / (DA * B'C').
Construct the projected line F'HEG'. The cross-ratio of these points is equal to r, i.e. r = (F'E * HG') / (HE * F'G').
F'F and G'G will intersect at the projected point Q so equating the cross-ratios and knowing the length of the side of the square you can determine the position of Q with some arithmetic gymnastics.
Hmmmm....I'll take a stab at this one. This solution relies on the assumption that ratios of angles are preserved in the transformation. See the image for guidance (sorry for the poor image quality...it's REALLY late). The algorithm only provides the mapping of a point in the quadrilateral to a point in the square. You would still need to implement dealing with multiple quad points being mapped to the same square point.
Let ABCD be a quadrilateral where A is the top-left vertex, B is the top-right vertex, C is the bottom-right vertex and D is the bottom-left vertex. The pair (xA, yA) represent the x and y coordinates of the vertex A. We are mapping points in this quadrilateral to the square EFGH whose side has length equal to m.
Compute the lengths AD, CD, AC, BD and BC:
AD = sqrt((xA-xD)^2 + (yA-yD)^2)
CD = sqrt((xC-xD)^2 + (yC-yD)^2)
AC = sqrt((xA-xC)^2 + (yA-yC)^2)
BD = sqrt((xB-xD)^2 + (yB-yD)^2)
BC = sqrt((xB-xC)^2 + (yB-yC)^2)
Let thetaD be the angle at the vertex D and thetaC be the angle at the vertex C. Compute these angles using the cosine law:
thetaD = arccos((AD^2 + CD^2 - AC^2) / (2*AD*CD))
thetaC = arccos((BC^2 + CD^2 - BD^2) / (2*BC*CD))
We map each point P in the quadrilateral to a point Q in the square. For each point P in the quadrilateral, do the following:
Find the distance DP:
DP = sqrt((xP-xD)^2 + (yP-yD)^2)
Find the distance CP:
CP = sqrt((xP-xC)^2 + (yP-yC)^2)
Find the angle thetaP1 between CD and DP:
thetaP1 = arccos((DP^2 + CD^2 - CP^2) / (2*DP*CD))
Find the angle thetaP2 between CD and CP:
thetaP2 = arccos((CP^2 + CD^2 - DP^2) / (2*CP*CD))
The ratio of thetaP1 to thetaD should be the ratio of thetaQ1 to 90. Therefore, calculate thetaQ1:
thetaQ1 = thetaP1 * 90 / thetaD
Similarly, calculate thetaQ2:
thetaQ2 = thetaP2 * 90 / thetaC
Find the distance HQ:
HQ = m * sin(thetaQ2) / sin(180-thetaQ1-thetaQ2)
Finally, the x and y position of Q relative to the bottom-left corner of EFGH is:
x = HQ * cos(thetaQ1)
y = HQ * sin(thetaQ1)
You would have to keep track of how many colour values get mapped to each point in the square so that you can calculate an average colour for each of those points.
I think what you're after is a planar homography, have a look at these lecture notes:
http://www.cs.utoronto.ca/~strider/vis-notes/tutHomography04.pdf
If you scroll down to the end you'll see an example of just what you're describing. I expect there's a function in the Intel OpenCV library which will do just this.
There is a C++ project on CodeProject that includes source for projective transformations of bitmaps. The maths are on Wikipedia here. Note that so far as i know, a projective transformation will not map any arbitrary quadrilateral onto another, but will do so for triangles, you may also want to look up skewing transforms.
If this transformation has to look good (as opposed to the way a bitmap looks if you resize it in Paint), you can't just create a formula that maps destination pixels to source pixels. Values in the destination buffer have to be based on a complex averaging of nearby source pixels or else the results will be highly pixelated.
So unless you want to get into some complex coding, use someone else's magic function, as smacl and Ian have suggested.
Here's how would do it in principle:
map the origin of A to the origin of B via a traslation vector t.
take unit vectors of A (1,0) and (0,1) and calculate how they would be mapped onto the unit vectors of B.
this gives you a transformation matrix M so that every vector a in A maps to M a + t
invert the matrix and negate the traslation vector so for every vector b in B you have the inverse mapping b -> M-1 (b - t)
once you have this transformation, for each point in the target area in B, find the corresponding in A and copy.
The advantage of this mapping is that you only calculate the points you need, i.e. you loop on the target points, not the source points. It was a widely used technique in the "demo coding" scene a few years back.

Resources