Generate random points inside a rectangle (uniformly)? - linux

I am trying to generate a certain amount of random uniform points inside a rectangle (I know the pair of coordinates for each corner).
Let our rectangle be
ABCD
My idea is:
Divide the rectangle into two triangles by the AC diagonal. Find the slope and the intercept of the diagonal.
Then, generate two random numbers from [0,1] interval, let them be a,b.
Evaluate x = aAB and y = bAD (AB, AD, distances). If A is not (0,0), then we can add to x and y A's coordinates.
Now we have a point (x,y). If it is not in the lower triangle (ABC), skip to the next step.
Else, add the point to our plot and also add the symmetric of (x,y) vs. the AC diagonal so that we can fill the upper triangle (ADC) too.
I have implemented this, but I highly doubt that the points are uniformly generated (judging from the plot). How should I modify my algorithm? I guess that the issue is related to how I pick the triangle and the symmetric thing.

Why not just generate x=random([A.x, B.x]) and y=random([B.y, C.y]) and put them together as (x,y)? A n-dimensional uniform distribution is simply the product of the n uniform distributions of the components.

This is referred to as point picking and other similar terms. You seem to be on the right track in that the points should come from the uniform distribution. Your plot looks reasonably random to me.
What are you doing with upper and lower triangles? They seem unnecessary and would certainly make things less random. Is this some form variance reduction along the lines of antithetic variates? If #Paddy3118 is right an you really just need random-ish points to fill the space, then you should look into low-discrepancy sequences. The Halton sequence generalizes the van der Corput sequence to multiple dimensions. If you have Matlab's Statistics Toolbox check out the sobolset and haltonset functions or qrandstream and qrand.

This approach (from #Xipan Xiao & #bonanova.) should be reproducible in many languages. MATLAB code below.
a = 0; b = 1;
n = 2000;
X = a + (b-a)*rand(n,1);
Y = a + (b-a)*rand(n,1);
Newer versions of MATLAB can make use of the makedist and random commands.
pdX = makedist('Uniform',a,b);
pdY = makedist('Uniform',a,b);
X = random(pdX,n,1);
Y = random(pdY,n,1);
The points (X,Y) will be uniformly in the rectangle with corner points (a,a), (a,b), (b,a), (b,b).
For verification, we can observe the marginal distributions for X and Y and see that those are uniform as well.
scatterhist(X,Y,'Marker','.','Direction','out')
Update: Using haltonset (suggested by #horchler)
p = haltonset(2);
XY = net(p,2000);
scatterhist(XY(:,1),XY(:,2),'Marker','.','Direction','out')

If you are after a more uniform density then you might consider a Van der Corput sequence. The sequence finds use in Monte-Carlo simulations and Wolfram Mathworld calls them a quasi-random sequence.

Generate two random numbers in the interval [0,1] translate and scale them to your rectangle as x and y.

There is just my thought, i haven't test with code yet.
1.Divide the rectangle to grid with N x M cells, depends on variable density.
2.loop through the cell and pick a random point in the cell until it reached your target point quantity.

Related

What's the different between using modelViewmatrix directly and using normalMatrix instead? [duplicate]

I am working on some shaders, and I need to transform normals.
I read in few tutorials the way you transform normals is you multiply them with the transpose of the inverse of the modelview matrix. But I can't find explanation of why is that so, and what is the logic behind that?
It flows from the definition of a normal.
Suppose you have the normal, N, and a vector, V, a tangent vector at the same position on the object as the normal. Then by definition N·V = 0.
Tangent vectors run in the same direction as the surface of an object. So if your surface is planar then the tangent is the difference between two identifiable points on the object. So if V = Q - R where Q and R are points on the surface then if you transform the object by B:
V' = BQ - BR
= B(Q - R)
= BV
The same logic applies for non-planar surfaces by considering limits.
In this case suppose you intend to transform the model by the matrix B. So B will be applied to the geometry. Then to figure out what to do to the normals you need to solve for the matrix, A so that:
(AN)·(BV) = 0
Turning that into a row versus column thing to eliminate the explicit dot product:
[tranpose(AN)](BV) = 0
Pull the transpose outside, eliminate the brackets:
transpose(N)*transpose(A)*B*V = 0
So that's "the transpose of the normal" [product with] "the transpose of the known transformation matrix" [product with] "the transformation we're solving for" [product with] "the vector on the surface of the model" = 0
But we started by stating that transpose(N)*V = 0, since that's the same as saying that N·V = 0. So to satisfy our constraints we need the middle part of the expression — transpose(A)*B — to go away.
Hence we can conclude that:
transpose(A)*B = identity
=> transpose(A) = identity*inverse(B)
=> transpose(A) = inverse(B)
=> A = transpose(inverse(B))
My favorite proof is below where N is the normal and V is a tangent vector. Since they are perpendicular their dot product is zero. M is any 3x3 invertible transformation (M-1 * M = I). N' and V' are the vectors transformed by M.
To get some intuition, consider the shear transformation below.
Note that this does not apply to tangent vectors.
Take a look at this tutorial:
https://paroj.github.io/gltut/Illumination/Tut09%20Normal%20Transformation.html
You can imagine that when the surface of a sphere stretches (so the sphere is scaled along one axis or something similar) the normals of that surface will all 'bend' towards each other. It turns out you need to invert the scale applied to the normals to achieve this. This is the same as transforming with the Inverse Transpose Matrix. The link above shows how to derive the inverse transpose matrix from this.
Also note that when the scale is uniform, you can simply pass the original matrix as normal matrix. Imagine the same sphere being scaled uniformly along all axes, the surface will not stretch or bend, nor will the normals.
If the model matrix is made of translation, rotation and scale, you don't need to do inverse transpose to calculate normal matrix. Simply divide the normal by squared scale and multiply by model matrix and we are done. You can extend that to any matrix with perpendicular axes, just calculate squared scale for each axes of the matrix you are using instead.
I wrote the details in my blog: https://lxjk.github.io/2017/10/01/Stop-Using-Normal-Matrix.html
Don't understand why you just don't zero out the 4th element of the direction vector before multiplying with the model matrix. No inverse or transpose needed. Think of the direction vector as the difference between two points. Move the two points with the rest of the model - they are still in the same relative position to the model. Take the difference between the two points to get the new direction, and the 4th element, cancels out to zero. Lot cheaper.

how to calculate anti/clockwise angle in direction of lines?

I need to offset a curve, which by the simplest way is just shifting the points perpendicularly. I can access each point to calculate angle of each line along given path, for now I use atan2. Then I take those two angle and make average of it. It returns the shortest angle, not what I need in this case.
How can I calculate angle of each connection? Concerning that I am not interested in the shortest angle but the one that would create parallel offset curve.
Assuming 2D case...
So do a cross product of direction vectors of 2 neighboring lines the sign of z coordinate of the result will tell you if the lines are CW/CCW
So if you got 3 consequent control points on the polyline: p0,p1,p2 then:
d1 = p1-p0
d2 = p2-p1
if you use some 3D vector math then convert them to 3D by setting:
d1.z=0;
d2.z=0;
now compute 3D cross:
n = cross(d1,d2)
which returns vector perpendicular to both vectors of size equals to the area of quad (parallelogram) constructed with d1,d2 as base vectors. The direction (from the 2 possible) is determined by the winding rule of the p0,p1,p2 so inspecting z of the result is enough.
The n.x,n.y are not needed so you can compute directly without doing full cross product:
n.z=(d1.x*d2.y)-(d1.y*d2.x)
if (n.z>0) case1
if (n.z<0) case2
if the case1 is CW or CCW depends on your coordinate system properties (left/right handness). This approach is very commonly used in CG fur back face culling of polygons ...
if n.z is zero it means that your vectors/lines are either parallel or at lest one of them is zero.
I think these might interest you:
draw outline for some connected lines
How can I create an internal spiral for a polygon?
Also in 2D you do not need atan2 to get perpendicular vector... You can do instead this:
u = (x,y)
v = (-y,x)
w = (x,-y)
so u is any 2D vector and v,w are the 2 possible perpendicular vectors to u in 2D. they are the result of:
cross((x,y,0),(0,0,1))
cross((0,0,1),(x,y,0))

What is the fastest way to find the center of an irregular convex polygon?

I'm interested in a fast way to calculate the rotation-independent center of a simple, convex, (non-intersecting) 2D polygon.
The example below (on the left) shows the mean center (sum of all points divided by the total), and the desired result on the right.
Some options I've already considered.
bound-box center (depends on rotation, and ignores points based on their relation to the axis).
Straight skeleton - too slow to calculate.
I've found a way which works reasonably well, (weight the points by the edge-lengths) - but this means a square-root call for every edge - which I'd like to avoid.(Will post as an answer, even though I'm not entirely satisfied with it).
Note, I'm aware of this questions similarity with:What is the fastest way to find the "visual" center of an irregularly shaped polygon?
However having to handle convex polygons increases the complexity of the problem significantly.
The points of the polygon can be weighted by their edge length which compensates for un-even point distribution.
This works for convex polygons too but in that case the center point isn't guaranteed to be inside the polygon.
Psudo-code:
def poly_center(poly):
sum_center = (0, 0)
sum_weight = 0.0
for point in poly:
weight = ((point - point.next).length +
(point - point.prev).length)
sum_center += point * weight
sum_weight += weight
return sum_center / sum_weight
Note, we can pre-calculate all edge lengths to halve the number of length calculations, or reuse the previous edge-length for half+1 length calculations. This is just written as an example to show the logic.
Including this answer for completeness since its the best method I've found so far.
There is no much better way than the accumulation of coordinates weighted by the edge length, which indeed takes N square roots.
If you accept an approximation, it is possible to skip some of the vertices by curve simplification, as follows:
decide of a deviation tolerance;
start from vertex 0 and jump to vertex M (say M=N/2);
check if the deviation along the polyline from 0 to M exceeds the tolerance (for this, compute the height of the triangle formed by the vertices 0, M/2, M);
if the deviation is exceeded, repeat recursively with 0, M/4, M/2 and M/2, 3M/4, M;
if the deviation is not exceeded, assume that the shape is straight between 0 and M.
continue until the end of the polygon.
Where the points are dense (like the left edge on your example), you should get some speedup.
I think its easiest to do something with the center of masses of the delaunay triangulation of the polygon points. i.e.
def _centroid_poly(poly):
T = spatial.Delaunay(poly).simplices
n = T.shape[0]
W = np.zeros(n)
C = 0
for m in range(n):
sp = poly[T[m,:],:]
W[m] = spatial.ConvexHull(sp).volume
C += W[m] +np.mean(sp, axis = 0)
return C / np.sum(W)
This works well for me!

How can I detect and remove unneeded points in cubic bezier

Here is example image of what I want to do:
I want to calculate Path 1 from Path 2.
Screenshot made from Inkscape, where I'm, at first, create Path 1, then add p3 to the original path. This is didn't change the original path at all, because new point actually unneeded. So, how can I detect this point(p3) using Path 2 SVG path representation and calculate Path 1 from Path 2?
Basically, I search for the math formulas, which can help me to convert(also checking that whether it is possible):
C 200,300 300,250 400,250 C 500,250 600,300 600,400
to
C 200,200 600,200 600,400
You're solving a constraint problem. Taking your first compound curve, and using four explicit coordinates for each subcurve, we have:
points1 = point[8];
points2 = point[4];
with the following correspondences:
points1[0] == points2[0];
points1[7] == points2[3];
direction(points1[0],points1[1]) == direction(points2[0], points2[1]);
direction(points1[6],points1[7]) == direction(points2[2], points2[3]);
we also have a constraint on the relative placement for points2[1] and points2[2] due to the tangent of the center point in your compound curve:
direction(points1[2],points[4]) == direction(points2[1],points2[2]);
and lastly, we have a general constraint on where on- and off-curve points can be for cubic curves if we want the curve to pass through a point, which is described over at http://pomax.github.io/bezierinfo/#moulding
Taking the "abc" ratio from that section, we can check whether your compound curve parameters fit a cubic curve: if we construct a new cubic curve with points
A = points1[0];
B = points1[3];
C = points1[7];
with B at t=0.5 (in this case), then we can verify whether the resulting curve fits the constraints that must hold for this to be a legal simplification.
The main problem here is that we, in general, don't know whether the "in between start and end" point should fall on t=0.5, or whether it's a different t value. The easiest solution is to see how far that point is along the total curve (using arc length: distance = arclength(c1) / arclength(c1)+arclength(c2) will tell us) and use that as initial guess for t, iterating outward on either side for a few values.
The second option is to solve a generic cubic equation for the tangent vector at your "in between" point. We form a cubic curve with points
points3 = [ points1[0], points1[1], points1[6], points1[7] ];
and then solve its derivative equations to find one or more t values that have the same tangent direction (but not magnitude!) as our in-between point. Once we have those (and we might have more than 2), we evaluate whether we can create a curve through our three points of interest with the middle point set to each of those found t values. Either one or zero of the found t values will yield a legal curve. If we have one: perfect, we found a simplification. If we find none, then the compound curve cannot be simplified into a single cubic curve.

Given a set of points, how do I approximate the major axis of its shape?

Given a "shape" drawn by the user, I would like to "normalize" it so they all have similar size and orientation. What we have is a set of points. I can approximate the size using bounding box or circle, but the orientation is a bit more tricky.
The right way to do it, I think, is to calculate the majoraxis of its bounding ellipse. To do that you need to calculate the eigenvector of the covariance matrix. Doing so likely will be way too complicated for my need, since I am looking for some good-enough estimate. Picking min, max, and 20 random points could be some starter. Is there an easy way to approximate this?
Edit:
I found Power method to iteratively approximate eigenvector. Wikipedia article.
So far I am liking David's answer.
You'd be calculating the eigenvectors of a 2x2 matrix, which can be done with a few simple formulas, so it's not that complicated. In pseudocode:
// sums are over all points
b = -(sum(x * x) - sum(y * y)) / (2 * sum(x * y))
evec1_x = b + sqrt(b ** 2 + 1)
evec1_y = 1
evec2_x = b - sqrt(b ** 2 + 1)
evec2_y = 1
You could even do this by summing over only some of the points to get an estimate, if you expect that your chosen subset of points would be representative of the full set.
Edit: I think x and y must be translated to zero-mean, i.e. subtract mean from all x, y first (eed3si9n).
Here's a thought... What if you performed a linear regression on the points and used the slope of the resulting line? If not all of the points, at least a sample of them.
The r^2 value would also give you information about the general shape. The closer to 0, the more circular/uniform the shape is (circle/square). The closer to 1, the more stretched out the shape is (oval/rectangle).
The ultimate solution to this problem is running PCA
I wish I could find a nice little implementation for you to refer to...
Here you go! (assuming x is a nx2 vector)
def majAxis(x):
e,v = np.linalg.eig(np.cov(x.T)); return v[:,np.argmax(e)]

Resources