Currently I am drawing a 3D curve consisting of 1200...1500 straight micro-lines directed by an array of 3D points (x,y,z), but rendering is a bit slow regardless of used technology (Adobe Flash, Three.js).
The curve is a kind of 3D arc with a 180 degree loop at the end, so I thought that skipping some points in places where the curve is more smooth and predictable will speed up rendering.
Could you suggest some algorithm which can determine how close to a straight line the specific piece of 3D curve is?
Update
I tried to make Three.js to render these points as a single curve and it works really fast. But the different pieces of this curve should be differently colored, so I have to draw it as a bunch of separate lines and the only thing I can do to speed it up is to skip every second point in a region where line is close to a straight line.
I can not use OpenGL (WebGL) because not all browsers support it.
The difference between three points and a straight line can be quantified from the distance of the middle one from the line on which the other two rest. Probably getting the two lengths along the line from either end point to the middle one, dividing the distance by both and summing the two results is the easiest way to turn it into a single number.
So:
as the middle point gets closer to the line, the number goes down;
as the line segment grows longer, variations by the mid point need to be proportionally more extreme; and
greater local slope (as if the middle point were very close to either end) produces a greater error.
You can get the distance from a position to a line by obtaining the vector from any point on the line to the position, using the dot product to work out how much of that is movement along the line and then subtracting that from the total. If you don't normalise your vector along the line first you end up having multiplied by the square of it, so no need for a square root operation on that account. Then for the implied length calculation you can just keep and compare all of those as squared.
Related
I have a data set that I receive from an outside source, and have no real control over.
The data, when plotted, shows two clumps of points with several sparse, irrelevant points. Here is a sample plot:
There is a clump of points on the left, clustered around (1, 16). This clump is actually part of a set of points that lies on (or near to) a line stretching from (1, 17.5) to (2.4, 13).
There is also an apparent curve from (1.75, 18) to (2.75, 12.5).
Finally, there are some sparse points above the second curve, around (2.5, 17).
Visually, it's not difficult to separate these groups of points. However, I need to separate these points within the data file into three groups, which I'll call Line, Curve, and Other (the Curve group is the one I actually need). I'd like to write a program that can do this reasonably well without needing to visually see the plot.
Now, I'm going to add a couple items that make this much worse. This is only a sample set of data. While the shapes of the curve and line are relatively constant from one data set to the next, the positions are not. These regions can (and do) shift, both horizontally and vertically. The only real constant is that there's a negative-slope line from the top-left to the bottom-right of the plot, an almost curve from the top-center to the bottom-right, and most of the sparse points are in the top-right corner, above the curve.
I'm on Linux, and I'm out of ideas. I can tell you the approaches that I've tried, though they have not done well.
First, I cleaned up the data set and sorted it in ascending order by x-coordinate. I thought that maybe the points were sorted in some sort of a logical way that would allow me to 'head' or 'tail' the data to achieve the desired result, but this was not the case.
I can write a code in anything (Python, Fortran, C, etc.) that removes a point if it's not within X distance of the previous point. This would be just fine, except that the scattering of the points is such that two points very near each other in x, are separated by an appreciable distance in y. It also doesn't help that the Line and Curve draw near one another for larger x-values.
I can fit a curve to a partial data set. When I sort the data by x-coordinate, for example, I can choose to only plot the first 30 points, or the last 200, or some set of 40 in the middle somewhere. That's not a problem. But the Line points tuck underneath the Curve points, which causes a problem.
If the Line points were fairly constant (which they're not), I could rotate my plot by some angle so that the Line is vertical and I can just look at the points to the right of that line, then rotate back. This may the best way to go about doing this, but in order to do that, I need to be able to isolate the linear points, which is more or less the essence of the problem.
The other idea that seems plausible to me, is to try to identify point density and split the data into separate files by those parameters. I think this is the best candidate for this problem, since it is independent of point location. However, I'm not sure how to go about doing this, especially because the Line and Curve do come quite close together for larger x-values (In the sample plot, it's x-values greater than about 2).
I know this does not exactly fall in with the request of a MWE, but I don't know how I'd go about providing a more classical MWE. If there's something else I can provide that would help, please ask. Thank you in advance.
I am currently working on a project that involves measuring distances all around a robot with a laser module, the robot then has to move based on the points that he gets.
I currently have access to 360 points that represent the distance from the center for each of the corresponding angles. (a distance for 0°, a distance for 1°, etc)
Here's an example of what the points look like when displayed on a 2D surface:
Circular representation of the points
What I'd like to be able to do is, rather than feeding the robot all 360 points, to feed it segments containing multiple points. For instance, the bottom part of the image would be a single segment even though the points are not completely aligned.
My question to you is, is there an existing algorithm that would help me achieve what I am trying to do?
(I'm working in python but that shouldn't really be a factor)
Thanks a lot.
Assuming your points are ordered:
For each point, look ahead by two points, if the middle point is less than some distance away from the segment between the two points, then push your endpoint 1 pt further, and check that now both of the middle points are still within some distance of your line segment. Proceed to do this until false, at which point roll back one pt and generate a segment, then set the end of that segment as the start of your next segment. Also, you could consider angles instead of just distances as there are some cases where that would be favorable. Also, if no segment can be made from a certain start point for several attempts, push the start point forward one (as not everything is going to simplify into segments)
Alternately, you could convert to Cartesian points and use the hough voting algorithm to detect lines from the resulting point-cloud.
I have sets of data with 1000 equally spaced points (in time-space) and was able to get its Fourier transform (in frequency-space), but the problem is that one set of data shows a diagonal line which passes from the last point of the right hand side back to the last point of the left hand side. I tried lowering the samples by only taking the last 500 points, but it seems to be around even after taking only the last 100 points. Thus maybe it's not sample dependent, but rather something's lacking/wrong with my syntax.
FFT was called by the 3 lines below (which I got from other posts)
sp = np.fft.fft(y1_500)
freq= np.fft.fftfreq(y1_500.shape[-1])
plt.plot(freq, np.abs(sp))
Can anyone tell me what's with the diagonal line?
Assume you are given the equation of a line (in 2d), and the equations of lines that form a convex polygon (the polygon could be unbounded). How do I determine if the line intersects the polygon?
Furthermore, are there computational geometry libraries where such tasks are pre-defined? I ask because I'm interested not just in the 2D version but n-dimensional geometry.
For the 2D case, I think the problem simplifies a bit.
The line partitions the space into two regions.
If the polygon is present in only one of those regions, then the line does not intersect it.
If the polygon is present in both regions, then the line does intersect it.
So:
Take any perpendicular to the line, making the intersection with the
line the origin.
Project each vertex of the polytope onto the perpendicular.
If those projections occur with both signs, then the polygon
intersects the line.
[Update following elexhobby's comment.]
Forgot to include the handling of the unbounded case.
I meant to add that one could create a "virtual vertex" to represent the open area. What we really need is the "direction" of the open area. We can take this as the mean of the vectors for the bounding edges of the open area.
We then treat the dot product of that direction with the normal and add that to the set of vertex projections.
In geometry, typically see wikipedia a polygon is bounded.
What you are describing is usually called a polytope or a polyhedron see wikipedia
There are a few geometry libraries available, two that come to mind are boost (polygon) and CGAL. Generally, there is a distinct split between computational methods that deal with 2d,3d, and N-d - for obvious reasons.
For your problem, I would use a somewhat Binary Space Partitioning Tree approach. I would take the first line of your "poly" and trim the query line against it, creating a ray. The ray would start at the intersection of the two lines, and proceed in direction of the interior of the half-space generated by the first line of the "poly". Now I would repeat the procedure with the ray and the second line of the "poly". (this could generate a segment instead of ray) If at some point the ray (or now segment) origin lies on the outer side of a poly line currently considered and does not intersect it, then the answer is no - the line does not intersect your "poly". Otherwise it intersects. Take special care with various parallel edge cases. Fairly straight forward and works for multi-dimensional cases.
I am not fully sure, but I guess you can address this by use of duality. First normalize your line equations as a.x+b.y=1, and consider the set of points (a,b).
These must form a convex polygon, and my guess is that the new line may not correspond to a point inside the polygon. This is readily checked by verifying that the new point is on the same side of all the edges. (If you don't know the order of the lines, first construct the convex hull.)
Let's start from finite polygons.
To intersect polygon a line must intersect one of its edges. Intersection between line and an edge is possible only if two points lie on different sides from the line.
That can be easily checked with sign(cross_product(Ep-Lp,Ld)) for two points of the edge. Ep - edge point, Lp - some point on the line, Ld - direction vector of the line, cross_product(A,B)=Ax*By-Ay*Bx.
To deal with infinite polygons we may introduce "infinite points". If we have a half infinite edge with point E1 and direction Ed, its "second point" is something like E1+infinity*Ed, where infinity is "big enough number".
For "infinite points" the check will be slightly different:
cross_product(Ep-Lp,Ld)=
=cross_product(E1+infinity*Ed-Lp,Ld)=
=cross_product(E1-Lp+infinity*Ed,Ld)=
=cross_product(E1-Lp,Ld)+cross_product(infinity*Ed,Ld)=
=cross_product(E1-Lp,Ld)+infinity*cross_product(Ed,Ld)
If cross_product(Ed,Ld) is zero (the line is parallel to the edge), the sign will be determined by the first component. Otherwise the second component will dominate and determine the sign.
I am working with a Microchip dsPIC33FJ128GP802. It's a small DSP-based microcontroller, and it doesn't have much power (40 million instructions per second). I'm looking for a way to render a convex (i.e. simple) polygon. I am only dealing with 2D shapes, integer math, and set or clear pixels (i.e. 1 bit per pixel.) I already have routines for drawing fast horizontal and vertical lines (writing up to 16 pixels in 88 cycles), so I would like to use a scanline algorithm.
However, all the algorithms I have found seem to depend on division (which takes 18 cycles on this processor) and floating point math (which is emulated in software and so is very slow; it also takes up a lot of ROM), or assume that I have a large amount of memory. I only have 2K left, ~14K is used for graphics RAM of my 16K. So does anyone know of any good, embedded machine algorithms they can point me to with a simple C or pseudocode implementation which I can implement in assembly? Preferably on the 'net, I don't live near any good bookstores with many programming books.
Thanks. :)
EDIT: Clarification, this is a polygon filling algorithm I'm looking for. I can implement a polygon outline algorithm using Bresenham's line drawing algorithm (as Marc B suggests.)
EDIT #2: I wanted to let everyone know I got a basic algorithm up in Python. Here's a link to the code. Public domain code.
http://dl.dropbox.com/u/1134084/bresenham_demos.py
How about Bresenham's Line algorithm? After some setup, it's pure integer math, and can be adapted to draw a polygon by simple iteration of starting points along the polygon edges.
comments followup:
I'll try to draw this in ASCII, but it'll probably look like crud. Bresenham's can be used to draw a filled polygon by picking a starting edge, and iteratively moving a bresenham line across the canvas parallel to that point.
Let's say you've got some points like this:
*(1)
*(3)
*(2)
*(4)
These are numbered in left-right sort priority, so you pick the left-most starting point (1) and decide if you want to go vertically (start 1,2) or horizontally (1,3). That'd probably depend on how your DSP does its display, but let's go with vertical.
So... You use the 1-2 line as your starting bresenham line. You calculate the starting points of your fill lines by using lines 1-3 and 2-4 as your start/end points. Start a bresenham calculation for each, and draw another Bresenham between those two points. Kinda like:
1.1 -> 2.1, then 1.2 -> 2.2, then 1.3 -> 2.3
etc... until you reach the end of either of those lines. In this case, that'd be when the lower starting point reaches (4). At that point, you start iterating up the 4,3 line, until you reach point 3 with both starting points, and you're done.
*-------
\\\\\\\\ *
\\\\\\\\
*-----\\
------- *
Where the dashes are the starting points you calculated along 1-3 and 2-4, and the slashes are the fill lines.
Of course, this only works if the points are properly sorted, and you've got a convex polygon. If it's concave, you'll have to be very careful to not let your fill lines cross over the border, or do some pre-processing and subdivide the original poly into two or more convex ones.
You may want to look at Michael Abrash's articles on Dr Dobbs about polygon fill/raster/etc. It uses fixed-point math
Thomas, if you have a Bresenham line drawing algorithm available, then use it as a basis for further enhancement: divide your polygon to sub-polygons with an horizontal cutting line through every vertex. Then, start tracing the 2 left and right sides of each of these sub-polys, using Bresenham. This way you have the 2 end-points of each scan line in your polygon.
I would start by converting the polygon to a collection of triangles and render those, because triangles are easy to render by scanlines. Although even so there are some details.
Essentially, the draw-triangle sub-procedure will be given a raw triangle and proceed:
Reject degenerate triangles (where two of the three vertices overlap).
Sort the vertices in Y (since there are only three you can hardcode the sorting logic).
Now, at this point you should know that there will be three kinds of triangles: ones with a flat top, ones with a flat bottom, and "general" triangles. You want to handle a general triangle by essentially splitting it into one each of the flat types. This is because you don't want to have an if test every scanline to detect if the slope changed.
To render a flat triangle, you would run two Bresenham algorithms in parallel to iterate the pixels comprising the edges, and use the points they give you as the endpoints of each horizontal scanline.
It may be easier to break the problem into two parts. First, locate/write an algorithm that draws and fills a triangle. Second, write an algorithm that breaks up an arbitrary polygon into triangles (using different combinations of the vertices).
To draw/fill a triangle, use Bresenham's Line Algorithm to simultaneously draw a line between points 0 and 1, and between 1 and 2. For each input point x, draw the pixel if it is equal to or in between the y points generated by the two lines. When you reach one endpoint, continue by using the unfinished side and the side that has not yet been used.
Edit:
To break your convex polygon into triangles, arrange the points in order and call them P1, P2, ... PN. Let P1 be your "root" point, and build triangles using that point and combinations of adjacent points. For example, a pentagon would yield the three triangles P1-P2-P3, P1-P3-P4, and P1-P4-P5. In general, a convex polygon with N sides will decompose into N-2 triangles.