I have the following code:
import Control.Monad
import Control.Monad.Trans
import Control.Monad.Trans.State
type T = StateT Int IO Int
someMaybe = Just 3
f :: T
f = do
x <- get
val <- lift $ do
val <- someMaybe
-- more code in Maybe monad
-- return 4
return 3
When I use do notation inside to work in Maybe monad it fails. From the error it gives it looks like type signature for this do doesn't match. However I have no idea how to fix it. I tried some lift combinations, but none of them worked and I don't want to guess anymore.
The problem is that Maybe is not part of your transformer stack. If your transformer only knows about StateT Int and IO, it does not know anything about how to lift Maybe.
You can fix this by changing your type T to something like:
type T = StateT Int (MaybeT IO) Int
(You'll need to import Control.Monad.Trans.Maybe.)
You will also need to change your inner do to work with MaybeT rather than Maybe. This means wrapping raw Maybe a values with MaybeT . return:
f :: T
f = do
x <- get
val <- lift $ do
val <- MaybeT $ return someMaybe
-- more code in Maybe monad
return 4
return 3
This is a little awkward, so you probably want to write a function like liftMaybe:
liftMaybe = MaybeT . return
If you used lift to lift IO a values in other parts of your code, this will now break because you have three levels in your transformer stack now. You will get an error that looks like this:
Couldn't match expected type `MaybeT IO t0'
with actual type `IO String'
To fix this, you should use liftIO for all your raw IO a values. This uses a typeclass to life IO actions through any number of transformer layers.
In response to your comment: if you only have a bit of code depending on Maybe, it would be easier just to put the result of the do notation into a variable and match against that:
let maybeVal = do val <- someMaybe
-- more Maybe code
return 4
case maybeVal of
Just res -> ...
Nothing -> ...
This means that the Maybe code will not be able to do an IO. You can also naturally use a function like fromMaybe instead of case.
If you want to run the code in the inner do purely in the Maybe monad, you will not have access to the StateT Int or IO monads (which might be a good thing). Doing so will return a Maybe value, which you will have to scrutinize:
import Control.Monad
import Control.Monad.Trans
import Control.Monad.Trans.State
type T = StateT Int IO Int
someMaybe = Just 3
f :: T
f = do
x <- get
-- no need to use bind
let mval = do
-- this code is purely in the Maybe monad
val <- someMaybe
-- more code in Maybe monad
return 4
-- scrutinize the resulting Maybe value now we are back in the StateT monad
case mval of
Just val -> liftIO . putStrLn $ "I got " ++ show val
Nothing -> liftIO . putStrLn $ "I got a rock"
return 3
Related
I am trying to stack up IO and Maybe monads but either I don't understand monad transformers well enough or this is not possible using transformers. Can some one help me understand this?
f :: String -> Maybe String
main :: IO ()
main = do
input <- getLine -- IO String
output <- f input -- Maybe String (Can't extract because it is IO do block)
writeFile "out.txt" output -- gives error because writeFile expects output :: String
In the above simplified example, I have a function f that returns a Maybe String and I would like to have a neat way of extracting this in the IO do block. I tried
f :: String -> MaybeT IO String
main :: IO ()
main = do
input <- getLine -- IO String
output <- runMaybeT (f input) -- Extracts output :: Maybe String instead of String
writeFile "out.txt" output -- gives error because writeFile expects output :: String
which lets me extract the Maybe String out in the second line of do block but I need to extract the string out of that. Is there a way to do this without using case?
Let's stick for a moment with your first snippet. If f input is a Maybe String, and you want to pass its result to writeFile "out.txt", which takes a String, you need to deal with the possibility of f input being Nothing. You don't have to literally use a case-statement. For instance:
maybe from the Prelude is case analysis packaged as a function;
fromMaybe from Data.Maybe lets you easily supply a default value, if that makes sense for your use case;
traverse_ and for_ from Data.Foldable could be used to silently ignore Nothing-ness:
for_ (f input) (writeFile "out.txt") -- Does nothing if `f input` is `Nothing`.
Still, no matter what you choose to do, it will involve handling Nothing somehow.
As for MaybeT, you don't really want monad transformers here. MaybeT IO is for when you want something like a Maybe computation but in which you can also include IO computations. If f :: String -> Maybe String already does what you want, you don't need to add an underlying IO layer to it.
Say I have a monadic stack like this:
import Control.Monad.Trans.Reader
import Control.Monad.Trans.Except
import Control.Monad.Trans
type MyMonad = ReaderT Env (ExceptT String IO) -- Env is irrelevant
And a function (simplified, but the idea holds):
f :: Integer -> MyMonad Integer
f 42 = lift $ throwE "42 is an ILLEGAL number"
f n = return n
What I now want to do is call f from another function, but catch the thrown exception if it occurs and somehow handle it (for instance, throw another exception but with the message changed). I'm having a hard time figuring out what kind of lift operations should be done here for it to be done properly. I tried something like this:
g n = do
x <- (f n) `catchE'` (\_ -> lift $ throwE "nope, still illegal")
return x
where catchE' - lift . catchE
but it obviously won't work because catchE' takes something in the ExceptT monad, not MyMonad. Can it be done easily? Perhaps changing the structure of the monad stack could help?
You need more than lift to lift catch through a monad transformer. In fact, there are transformers with no way to lift catch at all (such as ContT). However for ReaderT there is, and the easiest way to make use of that is via Control.Monad.Error.catchError from the mtl library.
Could someone give a super simple (few lines) monad transformer example, which is non-trivial (i.e. not using the Identity monad - that I understand).
For example, how would someone create a monad that does IO and can handle failure (Maybe)?
What would be the simplest example that would demonstrate this?
I have skimmed through a few monad transformer tutorials and they all seem to use State Monad or Parsers or something complicated (for a newbee). I would like to see something simpler than that. I think IO+Maybe would be simple, but I don't really know how to do that myself.
How could I use an IO+Maybe monad stack?
What would be on top? What would be on bottom? Why?
In what kind of use case would one want to use the IO+Maybe monad or the Maybe+IO monad? Would that make sense to create such a composite monad at all? If yes, when, and why?
This is available here as a .lhs file.
The MaybeT transformer will allow us to break out of a monad computation much like throwing an exception.
I'll first quickly go over some preliminaries. Skip down to Adding Maybe powers to IO for a worked example.
First some imports:
import Control.Monad
import Control.Monad.Trans
import Control.Monad.Trans.Maybe
Rules of thumb:
In a monad stack IO is always on the bottom.
Other IO-like monads will also, as a rule, always appear on the bottom, e.g. the state transformer monad ST.
MaybeT m is a new monad type which adds the power of the Maybe monad to the monad m - e.g. MaybeT IO.
We'll get into what that power is later. For now, get used to thinking of MaybeT IO as the maybe+IO monad stack.
Just like IO Int is a monad expression returning an Int, MaybeT IO Int is a MaybeT IO expression returning an Int.
Getting used to reading compound type signatures is half the battle to understanding monad transformers.
Every expression in a do block must be from the same monad.
I.e. this works because each statement is in the IO-monad:
greet :: IO () -- type:
greet = do putStr "What is your name? " -- IO ()
n <- getLine -- IO String
putStrLn $ "Hello, " ++ n -- IO ()
This will not work because putStr is not in the MaybeT IO monad:
mgreet :: MaybeT IO ()
mgreet = do putStr "What is your name? " -- IO monad - need MaybeT IO here
...
Fortunately there is a way to fix this.
To transform an IO expression into a MaybeT IO expression use liftIO.
liftIO is polymorphic, but in our case it has the type:
liftIO :: IO a -> MaybeT IO a
mgreet :: MaybeT IO () -- types:
mgreet = do liftIO $ putStr "What is your name? " -- MaybeT IO ()
n <- liftIO getLine -- MaybeT IO String
liftIO $ putStrLn $ "Hello, " ++ n -- MaybeT IO ()
Now all of the statement in mgreet are from the MaybeT IO monad.
Every monad transformer has a "run" function.
The run function "runs" the top-most layer of a monad stack returning
a value from the inside layer.
For MaybeT IO, the run function is:
runMaybeT :: MaybeT IO a -> IO (Maybe a)
Example:
ghci> :t runMaybeT mgreet
mgreet :: IO (Maybe ())
ghci> runMaybeT mgreet
What is your name? user5402
Hello, user5402
Just ()
Also try running:
runMaybeT (forever mgreet)
You'll need to use Ctrl-C to break out of the loop.
So far mgreet doesn't do anything more than what we could do in IO.
Now we'll work on an example which demonstrates the power of mixing
the Maybe monad with IO.
Adding Maybe powers to IO
We'll start with a program which asks some questions:
askfor :: String -> IO String
askfor prompt = do
putStr $ "What is your " ++ prompt ++ "? "
getLine
survey :: IO (String,String)
survey = do n <- askfor "name"
c <- askfor "favorite color"
return (n,c)
Now suppose we want to give the user the ability to end the survey
early by typing END in response to a question. We might handle it
this way:
askfor1 :: String -> IO (Maybe String)
askfor1 prompt = do
putStr $ "What is your " ++ prompt ++ " (type END to quit)? "
r <- getLine
if r == "END"
then return Nothing
else return (Just r)
survey1 :: IO (Maybe (String, String))
survey1 = do
ma <- askfor1 "name"
case ma of
Nothing -> return Nothing
Just n -> do mc <- askfor1 "favorite color"
case mc of
Nothing -> return Nothing
Just c -> return (Just (n,c))
The problem is that survey1 has the familiar staircasing issue which
doesn't scale if we add more questions.
We can use the MaybeT monad transformer to help us here.
askfor2 :: String -> MaybeT IO String
askfor2 prompt = do
liftIO $ putStr $ "What is your " ++ prompt ++ " (type END to quit)? "
r <- liftIO getLine
if r == "END"
then MaybeT (return Nothing) -- has type: MaybeT IO String
else MaybeT (return (Just r)) -- has type: MaybeT IO String
Note how all of the statemens in askfor2 have the same monad type.
We've used a new function:
MaybeT :: IO (Maybe a) -> MaybeT IO a
Here is how the types work out:
Nothing :: Maybe String
return Nothing :: IO (Maybe String)
MaybeT (return Nothing) :: MaybeT IO String
Just "foo" :: Maybe String
return (Just "foo") :: IO (Maybe String)
MaybeT (return (Just "foo")) :: MaybeT IO String
Here return is from the IO-monad.
Now we can write our survey function like this:
survey2 :: IO (Maybe (String,String))
survey2 =
runMaybeT $ do a <- askfor2 "name"
b <- askfor2 "favorite color"
return (a,b)
Try running survey2 and ending the questions early by typing END as a response to either question.
Short-cuts
I know I'll get comments from people if I don't mention the following short-cuts.
The expression:
MaybeT (return (Just r)) -- return is from the IO monad
may also be written simply as:
return r -- return is from the MaybeT IO monad
Also, another way of writing MaybeT (return Nothing) is:
mzero
Furthermore, two consecutive liftIO statements may always combined into a single liftIO, e.g.:
do liftIO $ statement1
liftIO $ statement2
is the same as:
liftIO $ do statement1
statement2
With these changes our askfor2 function may be written:
askfor2 prompt = do
r <- liftIO $ do
putStr $ "What is your " ++ prompt ++ " (type END to quit)?"
getLine
if r == "END"
then mzero -- break out of the monad
else return r -- continue, returning r
In a sense, mzero becomes a way of breaking out of the monad - like throwing an exception.
Another example
Consider this simple password asking loop:
loop1 = do putStr "Password:"
p <- getLine
if p == "SECRET"
then return ()
else loop1
This is a (tail) recursive function and works just fine.
In a conventional language we might write this as a infinite while loop with a break statement:
def loop():
while True:
p = raw_prompt("Password: ")
if p == "SECRET":
break
With MaybeT we can write the loop in the same manner as the Python code:
loop2 :: IO (Maybe ())
loop2 = runMaybeT $
forever $
do liftIO $ putStr "Password: "
p <- liftIO $ getLine
if p == "SECRET"
then mzero -- break out of the loop
else return ()
The last return () continues execution, and since we are in a forever loop, control passes back to the top of the do block. Note that the only value that loop2 can return is Nothing which corresponds to breaking out of the loop.
Depending on the situation you might find it easier to write loop2 rather than the recursive loop1.
Suppose you have to work with IO values that "may fail" in some sense, like foo :: IO (Maybe a), func1 :: a -> IO (Maybe b) and func2 :: b -> IO (Maybe c).
Manually checking for the presence of errors in a chain of binds quickly produces the dreaded "staircase of doom":
do
ma <- foo
case ma of
Nothing -> return Nothing
Just a -> do
mb <- func1 a
case mb of
Nothing -> return Nothing
Just b -> func2 b
How to "automate" this in some way? Perhaps we could devise a newtype around IO (Maybe a) with a bind function that automatically checks if the first argument is a Nothing inside IO, saving us the trouble of checking it ourselves. Something like
newtype MaybeOverIO a = MaybeOverIO { runMaybeOverIO :: IO (Maybe a) }
With the bind function:
betterBind :: MaybeOverIO a -> (a -> MaybeOverIO b) -> MaybeOverIO b
betterBind mia mf = MaybeOverIO $ do
ma <- runMaybeOverIO mia
case ma of
Nothing -> return Nothing
Just a -> runMaybeOverIO (mf a)
This works! And, looking at it more closely, we realize that we aren't using any particular functions exclusive to the IO monad. Generalizing the newtype a little, we could make this work for any underlying monad!
newtype MaybeOverM m a = MaybeOverM { runMaybeOverM :: m (Maybe a) }
And this is, in essence, how the MaybeT transformer works. I have left out a few details, like how to implement return for the transformer, and how to "lift" IO values into MaybeOverM IO values.
Notice that MaybeOverIO has kind * -> * while MaybeOverM has kind (* -> *) -> * -> * (because its first "type argument" is a monad type constructor, that itself requires a "type argument").
Sure, the MaybeT monad transformer is:
newtype MaybeT m a = MaybeT {unMaybeT :: m (Maybe a)}
We can implement its monad instance as so:
instance (Monad m) => Monad (MaybeT m) where
return a = MaybeT (return (Just a))
(MaybeT mmv) >>= f = MaybeT $ do
mv <- mmv
case mv of
Nothing -> return Nothing
Just a -> unMaybeT (f a)
This will allow us to perform IO with the option of failing gracefully in certain circumstances.
For instance, imagine we had a function like this:
getDatabaseResult :: String -> IO (Maybe String)
We can manipulate the monads independently with the result of that function, but if we compose it as so:
MaybeT . getDatabaseResult :: String -> MaybeT IO String
We can forget about that extra monadic layer, and just treat it as a normal monad.
I want to write a function that read some data using getLine and return i.e. a tuple (Integer, Integer) but using do-notation. Something like this (of course it doesn't work):
fun :: (Integer, Integer)
fun = do
a <- read (getLine::Integer)
b <- read (getLine::Integer)
return (a, b)
Do I have to write my own monad for this? Is there any solution to not writing a new monad?
EDIT
So I can write main function that use fun, I think it's the only solution:
main :: IO ()
main = do
tuple <- fun
putStrLn (show tuple)
fun :: IO (Integer, Integer)
fun = do
a1 <- getLine
b1 <- getLine
let a = read (a1)
b = read (b1)
return (a, b)
And above code works.
You type of function should be
fun :: IO (Integer, Integer)
as mentioned by #kaan you should not try to get a mondic value (with side effects) out of the monad as that will break referential transparency. Running fun should always return same value no matter how many times it is run and if we use your type this will not happen. However if the type is IO (Integer, Integer) then it returns the same action every time you use that function and running this action actually perform the side effect of reading the values from the console.
Coming back to using you function. You can do that inside another IO monad like
main = do
(a,b) <- fun
print a
print b
Although there are ways of getting things out of IO using unsafe functions but that is not recommended until you know exactly what you are doing.
As mentioned, you will need to give fun the type IO (Integer, Integer) instead of (Integer, Integer). However, once you have resigned yourself to this fate, there are many ways to skin this cat. Here are a handful of ways to get your imagination going.
fun = do
a <- getLine
b <- getLine
return (read a, read b)
-- import Control.Applicative for (<$>)
-- can also spell (<$>) as fmap, liftA, liftM, and others
fun = do
a <- read <$> getLine
b <- read <$> getLine
return (a, b)
fun = do
a <- readLn
b <- readLn
return (a, b)
fun = liftM2 (,) readLn readLn
-- different type!
-- use in main like this:
-- main = do
-- [a, b] <- fun
-- foo
-- import Control.Monad for replicateM
fun :: IO [Integer]
fun = replicateM 2 readLn
I've got a bunch of stateful functions inside a State monad. At one point in the program there needs to be some IO actions so I've wrapped IO inside a StateT getting a pair of types like this:
mostfunctions :: State Sometype a
toplevel :: StateT Sometype IO a
To keep things simple I don't want pass the IO context into the main set of functions and I would like to avoid wrapping them in the monad stack type. But in order to call them from the toplevel function I need something akin to a lift, but I'm not trying to lift a value from the inner monad. Rather I want to convert the state in the StateT monad into something equivalent in the State monad. To do this I've got the following:
wrapST :: (State Sometype a) -> StateT Sometype IO a
wrapST f = do s <- get
let (r,s2) = runState f s
put s2
return r
This then get used to interleave things like the following:
toplevel = do liftIO $ Some IO functions
wrapST $ Some state mutations
liftIO $ More IO functions
....
It seems like a fairly obvious block of code so I'm wondering does this function have a standard name, and it is already implemented somewhere in the standard libraries? I've tried to keep the description simple but obviously this extends to pulling one transformer out of a stack, converting the wrapped value to the cousin of the transformer type, skipping the monads below in the stack, and then pushing the results back in at the end.
It may be a good idea to refactor your code to use the type StateT SomeType m a instead of State SomeType a, because the first one is compatible to an arbitrary monad stack. If you'd change it like this, you don't need a function wrapST anymore, since you can call the stateful functions directly.
Okay. Suppose you have a function subOne :: Monad m => State Int Int:
subOne = do a <- get
put $ a - 1
return a
Now, change the types of all functions like this one from State SomeType a to StateT SomeType m a, leaving m as is. This way, your functions can work on any monadic stack. For those functions, that require IO, you can specify, that the monad at the bottom must be IO:
printState :: MonadIO m => StateT Int m ()
printState = do a <- get
liftIO $ print a
Now, it should be possible to use both functions together:
-- You could use me without IO as well!
subOne :: Monad m => StateT Int m ()
subOne = do a <- get
put $ a - 1
printState :: MonadIO m => StateT Int m ()
printState = do a <- get
liftIO $ print a
toZero :: StateT Int IO ()
toZero = do subOne -- A really pure function
printState -- function may perform IO
a <- get
when (a > 0) toZero
PS: I use GHC 7, some of the libs changed midway, so it might be a bit different on GHC 6.
A more direct answer to your question: the function hoist does exactly what you're describing in a slightly more generic way. Example usage:
import Control.Monad.State
import Data.Functor.Identity
import Control.Monad.Morph
foo :: State Int Integer
foo = put 1 >> return 1
bar :: StateT Int IO Integer
bar = hoist (return . runIdentity) foo
hoist is part of the MFunctor class, which is defined like this:
class MFunctor t where
hoist :: Monad m => (forall a. m a -> n a) -> t m b -> t n b
There are instances for most monad tranformers, but not ContT.