Solr - most frequent searched words - search

I'm trying to organize a solr search engine. I've already set up the misspelling system and the suggestions.
However I can't seem to find how to retrieve the top 10 most searched words/terms/keywords in solr/lucene. How can I get this? I want to display those on my homepage.

Solr does not provide this kind of feature out of the box. There is the StatsComponent, that provides you with all kind of statistics, but all of those are numeric only.
Depending on how you access solr (directly or via your own app) you could intercept all calls an log the query string. I did this in a recent project where I logged a queries to a database. If you submit all keywords to an other core on your solr server, you can faceting queries on your search terms as described by Hyque

You could use a facet for retrieving the Top X words like this:
http://yourservergoeshere/solr/select?q=*&wt=xml&indent=true&facet=true&facet.query=*&facet.field=message&facet.limit=10&facet.minCount=1
The value of facet.field depends on the field you like to search in. With facet.limit you'll (obviously) limit the amount of results to 10. You'll find the facet results at the end of the results, starting with "facet_counts"
Edit: I really should go to bed earlier. I didn't see the "most searched" in your question. Sorry for that.

Apache Solr does not provide any such capability as of today. There is a desire for this and a JIRA ticket corresponding to it. You can vote for it if you'd like to see it in Solr some day: https://issues.apache.org/jira/browse/SOLR-10359.
The stats component provides information around statistics, but it's mostly numeric in nature. You could parse server logs and come up with a way to build a Frequently Searched Terms (e.g. pump those logs in SiLK or Kibana for visualization).
If you have the ability to change the front end and add some javascript code to the UI or can intercept the search request and make an async or batch calls to APIs for tracking, you can use SearchStax Analytics that provides Search Analytics that tracks searches, clicks, cart actions, revenue, etc.

Related

Search feature on website

I am interested in implementing a search feature on a website. It is a location search, so address/state/zip all should work. Which will then show results in that area and allow it to be filtered.
My question is:
What's the best approach for something like this?
There are literally dozens of ways of doing this (if not more). The exact implementation would depend on the technology stack that you use, but as a very top level overview:
you'd need to store the things you are searching for somewhere, and tag them with a lat/long location. Often, this would be in a database of some kind.
using a programming language, you would need to write a search that accepts a postcode, translates that to a lat/long and then searches the things in your database based on the distance between the location of the thing, and the location entered in the search.
if you want to support filtering, your search would need to support that too. This is often called "faceting" the search.
Working out the lat/long locations will need to be done using a GeoLocation service, there are some, such as PostCode Anywhere that will do this as a paid service, and others that are free (within reason), such as the Google Maps APIs.
There are probably some hosted services that will do what you want, you'd have to shop around.
Examples of search software that supports geolocation searching out of the box are things like Solr, Azure Search, Lucene and Elastic.

Better or Not combine Search Engine and Recommend System?

In our project, we use search engine, but the result need to be ranked based on each user's interest, similar to recommendation according to users' keyword.
If we separate the two system, it would cost a lot time.
Is there a better way to combine Search Engine and Recommend System together?
Or is there a simple way to customize my ranking strategy to achieve this?
This is what we were trying to do in our project as well. There are two things while solving this problem - Relevancy vs Personalization. You should look at how much of personalization is ruining the relevancy of the query. For example, if I'm suggesting news, then it makes sense to suggest based on location. I hope you already would have analyzed the use cases.
The way that I followed was - after getting the results on the search, then re-rank results to give personal suggestions. For example if I was searching for a specific algorithm to code, then getting the result set and re-ranking on my preference, lets say on, Java (based on my previous history) will make sense. In any case relevancy is of utmost importance and then we fit in user's preferences.
Again the use case is important, if this was for a news search, then directly querying and retrieving on location is best way to do it.

Web Crawling and Pagerank

I'm a computer science student and I am a bit inexperienced when it comes to web crawling and building search engines. At this time, I am using the latest version of Open Search Server and am crawling several thousand domains. When using the built in search engine creation tool, I get search results that are related to my query but they are ranked using a vector model of documentation as opposed to the Pagerank algorithm or something similar. As a result, the top results are only marginally helpful whereas higher quality results from sites such as Wikipedia are buried on the second page.
Is there some way to run a crude Pagerank algorithm in Open Search Server? If not, is there a similarly easy to use open source package that does this?
Thanks for the help! This is my first time doing anything like this so any feedback is greatly appreciated.
I am not familiar with open search server, but I know that most of the students working on search engines use Lucene or Indri. Reading papers on novel approaches for document search you can find that majority of them use one of these two APIs. Lucene is more flexible than indri in terms of defining different rank algorithms. I suggest take a look at these two and see if they are convenient for your purpose.
As you mention, the web crawl template of OpenSearchServer uses a search query with a relevancy based on the vector space model. But if you use the last version (v1.5.11), it also mixes the number of backlinks.
You may change the weight of the score based on the backlinks, by default it is set to 1.
We are currently working on providing more control on the relevance. This will be visible in future versions of OpenSearchServer.

ElasticSearch - search statistic - like google analytics

I am looking into using ElasticSearch as a search engine for one of the projects I am working on.
There is still one thing which I need to find an answer for, and I hope someone inhere can help.
The customer want to be able to see some search statistic, like google analytics. Most searched words, new search words and so on.
Is there a way to easily setup this type of search statistic. My idea is something like ElasticSearch stores search history, about the search request made to the REST API. Then my customer can use Kibana or some other visual tool to monitor the search history of ElasticSearch.
Hope someone can help me with an answer for this.
Regards
Jacob
You could adjust the slow log to a time which it will capture all requests, however this will then produce large log files which will require maintenance. You could write an application which handles all of your ES requests, takes the search phrase and indexes this in a separate index i.e. your search history index and then deals with the actual request as normal, returning the response to the user.

Boost SolR results using users behavior

I would like SolR to be able to "learn" from my website users' choices. By that i mean that i know which product the user click after he performed a search. So i collected a list of [term searched => number of clicks] for each product indexed in SolR. But i can't figure how to have a boost that depends on the user input. Is it possible to index some key/value pairs for a document and retrieve the value with a function usable in the boost parameter ?
I'm not sure to be clear, so i'll add a concrete example :
Let's say that when a user search for "garden chair", SolR returns me 3 products, "green garden chair", "blue chair", and "hamac for garden".
"green garden chair" ranks first, the hamac ranks last, as expected.
But, then, all the users searching for "garden chair" ends up clicking on the hamac.
I would like to help the hamac to rank first on the search "garden chair", WITHOUT altering the rank it got on other search. So i would like to be able to perform a key=>value based boost.
Is that possible to achieve with SolR ?
I'm sure that i can't be the first one needing such user-based search results improvement.
Thanks in advance.
You could you edismax bq, if you are using edismax (or maybe bf). For this to work, you obviously need to store the info (in a db, redis, whatever you fancy):
searched "garden chair":
clicked "hamac for garden": 10
clicked "green garden chair": 4
searched "green table":
...
And so forth, look this up when there is a search, and if there is info available for the search, send the bq boosting what you want.
Also, check out the QueryElevationComponent It might your purpose (although is stronger than just boosting....). There are two things to consider though:
Every time you change the click number you would need to modify the xml and reload, so it would be better if you could batch it to nightly or something like that.
there was a recent jira issue to allow you to provide similar functionality but by providing request params, no need of xml/reload, so check that out too

Resources