Exception with Convexity Defects - visual-c++

I am trying get Convexity Defects from the following code, but keep getting a unhandled exception.
What am I doing wrong?
vector<Vec4i> defects;
ContourPoly = vector<Point>(contour.size());
approxPolyDP( Mat(contour), ContourPoly,20, false );
convexHull(Mat(ContourPoly), HullPoints, false, true);
// The following line wont work
convexityDefects(Mat(ContourPoly),HullPoints,defects);
While HullPoints are of type vector<Point>
The exception is as follows
OpenCV Error: Assertion Failed (ptnum >3) is unknown function, file ..\..\..\src\opencv\modules\imgproc\src\contours.cpp, line 1969
But with vector<Point> defects; or vector<Vec4i> defects
I get the following exception
OpenCV Error: Assertion Failed (hull.checkVector(1,CV_32S) is unknown function, file ..\..\..\src\opencv\modules\imgproc\src\contours.cpp, line 1971

defects should be vector<Vec4i>
From the documentation:
each convexity defect is represented as 4-element integer vector (a.k.a. cv::Vec4i): (start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices in the original contour of the convexity defect beginning, end and the farthest point, and fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the farthest contour point and the hull. That is, to get the floating-point value of the depth will be fixpt_depth/256.0

First of all
vector<vector<Vec4i> > defects;
should be:
vector<vector<Vec4i> > defects( contour.size() );
Also, before calling convexityDefects function, check if the size of the HullPoints is greater than 3.

Related

Octave boxwidth does not recognise core figure properties

I am trying to use the boxplot command in the statistics package, and it seems like most of the plot options are not recognised by Octave, by which I mean calling options like "BoxWidth" results in the following error:
error: set: unknown line property BoxWidth
error: __go_line__: unable to create graphics handle
error: called from
__plt__>__plt2vv__ at line 495 column 10
__plt__>__plt2__ at line 242 column 14
__plt__ at line 107 column 18
The code snippet producing this is as follows with the note that I have tried lower, upper,, camel, and sentence case for "BoxWidth" (documentation specifies camel case) and that I have tried both quotation marks and apostrophes to mark out the properties and the property options, with the same error produced in each case.
groups = [g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8, g_9, g_10, g_11];
data = [day_1_seat, day_2_seat, day_3_seat, day_4_seat, day_5_seat, ...
day_6_seat, day_7_seat, day_8_seat, day_9_seat, day_10_seat, ...
day_11_seat];
labels = {"29/07", "04/08", "05/08", "06/08", "07/08", "09/08", "11/08",...
"12/08", "13/08", "28/08", "01/09"};
s = boxplot(data,groups, "Notch", 0, "Symbol",".", "BoxWidth", "fixed");
The nature of the data in "groups" and "data" is unimportant, as I can create the boxplot without specifying properties without any issue. I have also tried specifying plot options after the initial call to boxplot with no luck.
This issue also occurs with other properties, such as Labels, OutlierTags etc, but not with "Notch" or "Symbol". I'm not a novice user, but I cannot figure out what the issue is here, any advice would be greatly appreciated!

decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]

I thought that setting a fixed number of decimal points to all numbers of an array of Decimals, and the new arrays resulting from operations thereof, could be achieved by simply doing:
from decimal import *
getcontext().prec = 5 # 4 decimal points
v = Decimal(0.005)
print(v)
0.005000000000000000104083408558608425664715468883514404296875
However, I get spurious results that I know are the consequence of the contribution of these extra decimals to the calculations. Therefore, as a workaround, I used the round() function like this:
C_subgrid= [Decimal('33.340'), Decimal('33.345'), Decimal('33.350'), Decimal('33.355'), Decimal('33.360'), Decimal('33.365'), Decimal('33.370'), Decimal('33.375'), Decimal('33.380'), Decimal('33.385'), Decimal('33.390'), Decimal('33.395'), Decimal('33.400'), Decimal('33.405'), Decimal('33.410'), Decimal('33.415'), Decimal('33.420'), Decimal('33.425'), Decimal('33.430'), Decimal('33.435'), Decimal('33.440'), Decimal('33.445'), Decimal('33.450'), Decimal('33.455'), Decimal('33.460'), Decimal('33.465'), Decimal('33.470'), Decimal('33.475'), Decimal('33.480'), Decimal('33.485'), Decimal('33.490'), Decimal('33.495'), Decimal('33.500'), Decimal('33.505'), Decimal('33.510'), Decimal('33.515'), Decimal('33.520'), Decimal('33.525'), Decimal('33.530'), Decimal('33.535'), Decimal('33.540'), Decimal('33.545'), Decimal('33.550'), Decimal('33.555'), Decimal('33.560'), Decimal('33.565'), Decimal('33.570'), Decimal('33.575'), Decimal('33.580'), Decimal('33.585'), Decimal('33.590'), Decimal('33.595'), Decimal('33.600'), Decimal('33.605'), Decimal('33.610'), Decimal('33.615'), Decimal('33.620'), Decimal('33.625'), Decimal('33.630'), Decimal('33.635'), Decimal('33.640'), Decimal('33.645'), Decimal('33.650'), Decimal('33.655'), Decimal('33.660'), Decimal('33.665'), Decimal('33.670'), Decimal('33.675'), Decimal('33.680'), Decimal('33.685'), Decimal('33.690'), Decimal('33.695'), Decimal('33.700'), Decimal('33.705'), Decimal('33.710'), Decimal('33.715'), Decimal('33.720'), Decimal('33.725'), Decimal('33.730'), Decimal('33.735'), Decimal('33.740'), Decimal('33.745'), Decimal('33.750'), Decimal('33.755'), Decimal('33.760'), Decimal('33.765'), Decimal('33.770'), Decimal('33.775'), Decimal('33.780'), Decimal('33.785'), Decimal('33.790'), Decimal('33.795'), Decimal('33.800'), Decimal('33.805'), Decimal('33.810'), Decimal('33.815'), Decimal('33.820'), Decimal('33.825'), Decimal('33.830'), Decimal('33.835'), Decimal('33.840'), Decimal('33.845'), Decimal('33.850'), Decimal('33.855'), Decimal('33.860'), Decimal('33.865'), Decimal('33.870'), Decimal('33.875'), Decimal('33.880'), Decimal('33.885'), Decimal('33.890'), Decimal('33.895'), Decimal('33.900'), Decimal('33.905'), Decimal('33.910'), Decimal('33.915'), Decimal('33.920'), Decimal('33.925'), Decimal('33.930'), Decimal('33.935'), Decimal('33.940'), Decimal('33.945'), Decimal('33.950'), Decimal('33.955'), Decimal('33.960'), Decimal('33.965'), Decimal('33.970'), Decimal('33.975'), Decimal('33.980'), Decimal('33.985'), Decimal('33.990'), Decimal('33.995'), Decimal('34.000'), Decimal('34.005'), Decimal('34.010'), Decimal('34.015'), Decimal('34.020'), Decimal('34.025'), Decimal('34.030'), Decimal('34.035'), Decimal('34.040'), Decimal('34.045'), Decimal('34.050'), Decimal('34.055'), Decimal('34.060'), Decimal('34.065'), Decimal('34.070'), Decimal('34.075'), Decimal('34.080'), Decimal('34.085'), Decimal('34.090'), Decimal('34.095'), Decimal('34.100'), Decimal('34.105'), Decimal('34.110'), Decimal('34.115'), Decimal('34.120'), Decimal('34.125'), Decimal('34.130'), Decimal('34.135'), Decimal('34.140')]
C_subgrid = [round(v, 4) for v in C_subgrid]
I got the values of C_subgrid list by printing it out during execution of my code, and I pasted it here. Not sure where the single quotes come from. This code snipped worked fine in Python2.7, but when I upgraded to Python 3.7 it started raising this error:
File "/home2/thomas/Documents/4D-CHAINS_dev/lib/peak.py", line 301, in <listcomp>
C_subgrid = [round(v, 4) for v in C_subgrid] # convert all values to fixed decimal length floats!
decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]
Strangely, if I run it within ipython it works fine, only within my code it creates problems. Can anybody think of any possible reason?

PACF function in statsmodels.tsa.stattools gives numbers greater than 1 when using ywunbiased?

I have a dataframe which is of length 177 and I want to calculate and plot the partial auto-correlation function (PACF).
I have the data imported etc and I do:
from statsmodels.tsa.stattools import pacf
ys = pacf(data[key][array].diff(1).dropna(), alpha=0.05, nlags=176, method="ywunbiased")
xs = range(lags+1)
plt.figure()
plt.scatter(xs,ys[0])
plt.grid()
plt.vlines(xs, 0, ys[0])
plt.plot(ys[1])
The method used results in numbers greater than 1 for very long lags (90ish) which is incorrect and I get a RuntimeWarning: invalid value encountered in sqrtreturn rho, np.sqrt(sigmasq) but since I can't see their source code I don't know what this means.
To be honest, when I search for PACF, all the examples only carry out PACF up to 40 lags or 60 or so and they never have any significant PACF after lag=2 and so I couldn't compare to other examples either.
But when I use:
method="ols"
# or
method="ywmle"
the numbers are corrected. So it must be the algo they use to solve it.
I tried importing inspect and getsource method but its useless it just shows that it uses another package and I can't find that.
If you also know where the problem arises from, I would really appreciate the help.
For your reference, the values for data[key][array] are:
[1131.130005, 1144.939941, 1126.209961, 1107.300049, 1120.680054, 1140.839966, 1101.719971, 1104.23999, 1114.579956, 1130.199951, 1173.819946, 1211.920044, 1181.27002, 1203.599976, 1180.589966, 1156.849976, 1191.5, 1191.329956, 1234.180054, 1220.329956, 1228.810059, 1207.01001, 1249.47998, 1248.290039, 1280.079956, 1280.660034, 1294.869995, 1310.609985, 1270.089966, 1270.199951, 1276.660034, 1303.819946, 1335.849976, 1377.939941, 1400.630005, 1418.300049, 1438.23999, 1406.819946, 1420.859985, 1482.369995, 1530.619995, 1503.349976, 1455.27002, 1473.98999, 1526.75, 1549.380005, 1481.140015, 1468.359985, 1378.550049, 1330.630005, 1322.699951, 1385.589966, 1400.380005, 1280.0, 1267.380005, 1282.829956, 1166.359985, 968.75, 896.23999, 903.25, 825.880005, 735.090027, 797.869995, 872.8099980000001, 919.1400150000001, 919.320007, 987.4799800000001, 1020.6199949999999, 1057.079956, 1036.189941, 1095.630005, 1115.099976, 1073.869995, 1104.48999, 1169.430054, 1186.689941, 1089.410034, 1030.709961, 1101.599976, 1049.329956, 1141.199951, 1183.26001, 1180.550049, 1257.640015, 1286.119995, 1327.219971, 1325.829956, 1363.609985, 1345.199951, 1320.640015, 1292.280029, 1218.890015, 1131.420044, 1253.300049, 1246.959961, 1257.599976, 1312.410034, 1365.680054, 1408.469971, 1397.910034, 1310.329956, 1362.160034, 1379.319946, 1406.579956, 1440.670044, 1412.160034, 1416.180054, 1426.189941, 1498.109985, 1514.680054, 1569.189941, 1597.569946, 1630.73999, 1606.280029, 1685.72998, 1632.969971, 1681.550049, 1756.540039, 1805.810059, 1848.359985, 1782.589966, 1859.449951, 1872.339966, 1883.949951, 1923.569946, 1960.22998, 1930.6700440000002, 2003.369995, 1972.290039, 2018.050049, 2067.560059, 2058.899902, 1994.9899899999998, 2104.5, 2067.889893, 2085.51001, 2107.389893, 2063.110107, 2103.840088, 1972.180054, 1920.030029, 2079.360107, 2080.409912, 2043.939941, 1940.2399899999998, 1932.22998, 2059.73999, 2065.300049, 2096.949951, 2098.860107, 2173.600098, 2170.949951, 2168.27002, 2126.149902, 2198.810059, 2238.830078, 2278.8701170000004, 2363.639893, 2362.719971, 2384.199951, 2411.800049, 2423.409912, 2470.300049, 2471.649902, 2519.360107, 2575.26001, 2584.840088, 2673.610107, 2823.810059, 2713.830078, 2640.8701170000004, 2648.050049, 2705.27002, 2718.3701170000004, 2816.290039, 2901.52002, 2913.97998]
Your time series is pretty clearly not stationary, so that Yule-Walker assumptions are violated.
More generally, PACF is usually appropriate with stationary time series. You might difference your data first, before considering the partial autocorrelations.

all arguments must have same length

The achievement variable has three different values. All N/A and null values have already been removed from the dataset. When I try to run the confusion matrix code I receive the error "all arguments must have the same length."
glm.fit=multinom(Achievement~Time.Played, data=thesis2)
summary(glm.fit)
predict(glm.fit, thesis2, "probs")
dim(thesis2)
set.seed(101)
train= thesis2[1:225928,]
test= thesis2[225929:451856,]
glm.fit=multinom(Achievement~Time.Played, data=train)
glm.predict=predict(glm.fit, test, "probs",na.action=na.omit)
dim(test)
dim(glm.predict)
length(glm.predict)
length(Achievement.test)
table(glm.predict,test$Achievement)
mean(glm.predict==Achievement.test)
----------
Error in table(glm.predict, test$Achievement) : all arguments must have the >same length
2. stop("all arguments must have the same length")
1.table(glm.predict, test$Achievement)
However the glm.predict has the dimensions 225928 6 and the test$Achievement has the dimensions 225928 3. I have looked at the other posts about the arguments not having the same length, and I can not figure out what is wrong with my code. Please help.

linearK error in seq. default() cannot be NA, NaN

I am trying to learn linearK estimates on a small linnet object from the CRC spatstat book (chapter 17) and when I use the linearK function, spatstat throws an error. I have documented the process in the comments in the r code below. The error is as below.
Error in seq.default(from = 0, to = right, length.out = npos + 1L) : 'to' cannot be NA, NaN or infinite
I do not understand how to resolve this. I am following this process:
# I have data of points for each data of the week
# d1 is district 1 of the city.
# I did the step below otherwise it was giving me tbl class
d1_data=lapply(split(d1, d1$openDatefactor),as.data.frame)
# I previously create a linnet and divided it into districts of the city
d1_linnet = districts_linnet[["d1"]]
# I create point pattern for each day
d1_ppp = lapply(d1_data, function(x) as.ppp(x, W=Window(d1_linnet)))
plot(d1_ppp[[1]], which.marks="type")
# I am then converting the point pattern to a point pattern on linear network
d1_lpp <- as.lpp(d1_ppp[[1]], L=d1_linnet, W=Window(d1_linnet))
d1_lpp
Point pattern on linear network
3 points
15 columns of marks: ‘status’, ‘number_of_’, ‘zip’, ‘ward’,
‘police_dis’, ‘community_’, ‘type’, ‘days’, ‘NAME’,
‘DISTRICT’, ‘openDatefactor’, ‘OpenDate’, ‘coseDatefactor’,
‘closeDate’ and ‘instance’
Linear network with 4286 vertices and 6183 lines
Enclosing window: polygonal boundary
enclosing rectangle: [441140.9, 448217.7] x [4640080, 4652557] units
# the errors start from plotting this lpp object
plot(d1_lpp)
"show.all" is not a graphical parameter
Show Traceback
Error in plot.window(...) : need finite 'xlim' values
coords(d1_lpp)
x y seg tp
441649.2 4649853 5426 0.5774863
445716.9 4648692 5250 0.5435492
444724.6 4646320 677 0.9189631
3 rows
And then consequently, I also get error on linearK(d1_lpp)
Error in seq.default(from = 0, to = right, length.out = npos + 1L) : 'to' cannot be NA, NaN or infinite
I feel lpp object has the problem, but I find it hard to interpret the errors and how to resolve them. Could someone please guide me?
Thanks
I can confirm there is a bug in plot.lpp when trying to plot the marked point pattern on the linear network. That will hopefully be fixed soon. You can plot the unmarked point pattern using
plot(unmark(d1_lpp))
I cannot reproduce the problem with linearK. Which version of spatstat are you running? In the development version on my laptop spatstat_1.51-0.073 everything works. There has been changes to this code recently, so it is likely that this will be solved by updating to development version (see https://github.com/spatstat/spatstat).

Resources